

CONSULTANCY SERVICES FOR PREPARATION OF DPR FOR THE WORK OF CONSTRUCTION OF UNDERGROUND VEHICULAR TUNNEL FROM HEBBAL ESTEEM MALL JUNCTION TO SILK BOARD KSRP JUNCTION

DRAFT DETAILED PROJECT REPORT

VOLUME - II A GEOTECH DESIGN REPORT

September 2024

RODIC CONSULTANTS PVT. LTD

BRUHAT BENGALURU MAHANAGARA PALIKE

DOCUMENT SUMMARY SHEET

Doc. No.	DGN	J-1640-HO-DPR-2024/0018		<i>V</i>			
Rev. No.	. R0		Rodic				
Date	24 th \$	September 2024		2			
Page no.	61			Rodic Consultants	Private Lir	nited	
Project	Cons Vehi	sultancy services for prepara cular Tunnel from Hebbal Es	ntion of DP steem mall j	R for the work of Constru junction to Silk Board KS	uction of un RP junction	nderground n.	
Report	ort Executive Summary						
		Nan	ne and Desi	gnation			
Owner		Rodic Consultants Pvt. Ltd	•				
		Name & Designation Remark		Name & Designation	Ren	narks	
Prepared	By	Mr. Ravi Ranjan	Ok				
		Mr. Harsh Dalal	Ok				
Reviewed	By	Mr. Adarsh Kumar Tiwari Project Co-Ordinator	Ok	Mr. Jagdish Sharma Asst. Vice President	(Ok	
Approved By Dr H R Yadav Executive Director		Ok					
		R	evision Sum	mary	·		
SI. No	Sl. No Date		Modifications	Version	Remarks		
	_						
L		1		1	L	1	

TABLE OF CONTENTS

CHAP	TER 1: INTRODUCTION	5
1.1	General	5
1.2	Project Location	5
1.3	Scope	5
CHAP	TER 2: REFERENCES	6
2.1	Documents Made Available	6
2.2	References	6
2.3	Documents Submitted	6
2.4	Software	6
CHAP	FER 3: GEOTECHNICAL DESIGN PARAMETERS	7
CHAP	TER 4: LAYOUT	9
4.1	General Section detail for secant pile	9
4.2	Overlapping	10
CHAP	TER 5: MATERIAL PROPERTIES	
5.1	Concrete	
5.2	Sprayed Concrete	
5.3	Steel Fiber Reinforced Shotcrete (SFRS)	12
5.4	Rock Bolts	12
5.5	Pre-stressed soil anchors in secant pile (Tie Back)	12
5.6	Lattice Girders	12
5.7	Pipe roof	12
5.8	Face Stability	14
CHAP	FER 6: LOADS & LOAD COMBINATION	15
6.1	Loads	15
6.2	Load Factors	15
6.3	Partial Factors of Safety for Materials	15
6.4	Factor of Safety	15
CHAP	FER 7: MODELLING & ANALYSIS	16
7.1	Numerical Analysis	16
7.2	FEM Modelling Stages	
CHAP	TER 8: RESULTS SUMMARY -DEEP EXCAVATION	20
8.1	Analysis Results	20
8.1.1	Global Stability:	20
		,

Rodic Consultants Pvt. Ltd

	KSRP junction	Draft Detailed Project Report
8.1.2	Support Summary	
8.2	Open cut support summary	
8.2.1	Local Stability	21
8.2.2	Pile Bearing Capacity Check	
8.2.3	Toe Stability Check	
8.2.4	Structural Reinforcement Detail Design for secant pile wall	21
CHAP	TER 9: NATM TUNNELS	
9.1	NATM Tunnel – Design Basis	
€.1.1	Typical Cross Section of NATM Regular Section	22
9.2	Design Approach	
7.3	Design Consideration for Primary Support	24
9.4	Design Phase	
9.5	Ground Types	
9.6	Behaviour Types	
9.7	Calculations according to Duddeck/Erdmann	
9.8	Numerical Analysis	25
9.9	Construction Phase	
ə.10	Construction Material Properties	
9.11	Design loads and Safety Factors	
9.11.1	Earth Pressure	
9.11.2	Water Load	
9.11.3	Earthquake	
9.12	Analysis Results for Primary Support	
9.12.1	Results of Analysis according to Duddeck/Erdmann NATM Regular Section 2 La	ane27
9.12.2	Proposed Primary Support for NATM Regular Section 2 Lane	
9.12.3	Results of Analysis according to Duddeck/Erdmann NATM Vehicular Cross pass	sage28
9.12.4	Proposed Primary Support for NATM Vehicular Cross Passage 1 Lane	
СНАРТ	FER 10: LIST OF ANNEXURES	

LIST OF TABLES

Table 1 : Geotechnical Parameters for Soil	7
Table 2 : Geotechnical Parameters for Rock	7
Table 3 : Geotechnical Design Parameters for Soil -Deep Excavation	7
Table 4 : Geotechnical Design Parameters for Rock -Deep Excavation	8
Table 5 : Properties of M35 grade concrete for Hard Pile	11
Table 6 : Early Strength Development of Sprayed Concrete	11
Table 7 : Rock bolt support measures	
Table 8 : Pre-stressed soil anchors in secant pile	
Table 9 : Minimum Load Types and Consequential Effects	15
Table 10: Partial Factors of Safety for Materials	15
Table 11: FEM modelling stages to simulate 32m Deep excavation (Shafts / C&C)	
Table 12: FEM modelling stages to simulate 12m Deep excavation (Ramp Portion)	
Table 13: FEM analysis results (Maximum Unfactored forces) for 32m and 12m Excavation depth	20
Table 14: Global Stability Check for for 32m and 12m Excavation depth	20
Table 15: Summary of Anchor/ Bolt Forces -FEM Analysis	20
Table 16: Support Summary for Secant Pile wall	20
Table 17: Support Summary – Open Cut	21
Table 18: Ground Behaviour Type	25
Table 19: Duddeck/Erdmann analysis results	27
Table 20: NATM Regular Section 2 Lane Support Class	
Table 21: Duddeck/Erdmann analysis results	
Table 22: Support Class-Vehicular Cross Passage- 1 Lane (NATM)	

LIST OF FIGURES

Figure 1: Typical Section Detail of Deep Excavation for Shaft & Cut and Cover Zone	9
Figure 2: General details of Secant piles of 1.0m Diameter	9
Figure 3: General details of Secant piles of 0.8m Diameter	10
Figure 4: Early Strength Requirement for Sprayed concrete	11
Figure 5: Without forepoling	13
Figure 6: With Forepoling	13
Figure 7: Terzaghi's equation for estimation of vertical load	13
Figure 8: Typical FEM cross section for 32m Deep Excavation	17
Figure 9: Typical FEM cross section for 12m Deep Excavation	17
Figure 10: Typical Regular cross-section of NATM- 2 Lane	22
Figure 11: Typical Regular cross-section of NATM (Vehicular Cross Passage)-1 Lane	22
Figure 12: General design methodology for NATM Tunnelling sections	23
Figure 13: Flow chart showing geotechnical design procedure during construction.	26

Page 4 of 30

CHAPTER 1 INTRODUCTION

Consultancy services for preparation of DPR for the work of Construction of underground Vehicular Tunnel from Hebbal Esteem mall junction to Silk Board KSRP junction

CHAPTER 1: INTRODUCTION

1.1 General

Bruhat Bengaluru Mahanagara Palike (BBMP) intends to Construct a Underground Vehicular Tunnel for the North – South Corridor starting from Hebbal Esteem Mall junction to Silk Board KSRP Junction.

In pursuance of the above, **Rodic Consultants Pvt Ltd.**, **New Delhi** has been appointed as consultants to carry out **Consultancy Services for Preparation of DPR for the work of Construction of Underground Vehicular Tunnel from Hebbel Esteem Mall junction to Silk Board KSRP junction.**

1.2 Project Location

The entire project is located in Bengaluru city.

The North – South Corridor starting from Hebbal Esteem Mall junction to Silk Board KSRP Junction is going to develop as Underground Vehicular tunnel having 04 connecting stretches with Entry and Exit are as below:

- Esteem Mall-Hebbal-Mekri circle-Palace Ground
- Palace Ground- Golf Course-Race Course-Palace Road Jn
- Racecourse/Chalyuka circle-Lalbagh BG
- Lalbagh Botanical Garden- Silk Board KSRP Jn

1.3 Scope

The report covers the stability analysis for the deep excavation of Shaft and Cut and Cover Portion along with analytical design for NATM tunnel (main tunnel with 2 lanes), including vehicular cross passage.

Draft Detailed Project Report

CHAPTER 2: REFERENCES

- [1] Feasibility Study Report (North South Corridor)
- [2] Alignment Drawings

2.2 References

- [1] IS 456: 2000 Plain and reinforced concrete Code of practice (Fourth Revision)
- [2] IS 14448-1979: Code of Practice for Reinforcement of Rock Slopes with Plane Wedge Failure
- [3] BS 8081:2015 Code of practice for grouted anchors
- [4] EN 1992-1-1 (2004) (English): Eurocode 2: Design of Concrete Structures Part-1-1: General rules and rules for buildings
- [5] FHWA-IF-99-015 (1999): Ground Anchors and Anchored Systems
- [6] FHWA-NHI-14-007 (2015): Soil Nail Walls Reference Manual
- [7] IS 10270-1982: Guidelines for Design and Construction of Prestressed Rock Anchors
- [8] IS 1556-1982: Specification for Hard-Drawn Steel Wire Fabric for Concrete Reinforcement
- [9] IS: 15026 (2002) Tunnelling Methods in Rock Masses-Guidelines.
- [10] Duddeck H. and Erdmann J.: Structural design models for tunnels
- [11] Duddeck Duddeck H. and Erdmann J.: Vergleich ebener und Entwicklung räumlicherBerechnungsverfahren für Tunnel
- [12] Austrian Society for Rock Mechanics: Geotechnical Underground Structures Design (Tunneling in Rock)
- [13] Austrian Standard ONORM B2203 Part 1, Underground Works Conventional Excavation, 2001
- [14] Austrian Society for Concrete and Construction technology: Guideline Sprayed concrete, 2013
- [15] Practical Rock Engineering by Evert Hoek
- [16] Soil Mechanics & Engineering in Practice by Karl Terzaghi and Ralph B. Peck
- [17] Foundation Analysis and Design by Joseph E Bowles.

2.3 Documents Submitted

- [1] Geotechnical Interpretative Report (GIR) Report No. I40172-GIR
- [2] Structural Design Report, Report No- I40172-Structure-DRP

2.4 Software

[1] RS2 (Version 10) – Rocscience Software, Finite Element Analysis for Excavations and Slopes

Draft Detailed Project Report

CHAPTER 3 GEOTECHNICAL DESIGN REPORT

CHAPTER 3: GEOTECHNICAL DESIGN PARAMETERS

The Following parameters have been considered from GIR report [1] based on the available information.

*Depth from Surface	Strata Description	Bulk Unit Weight	Cohesion (c')	Friction Angle(Ø')	(E')	Ko	Poisson's Ratio (v)	Permeability (k)
		[kN/m3]	[kPa]	[0]	[MPa]		[-]	[m/sec]
0-2 (7.5)m	Fill Material	16	0	25	5	0.58	0.3	5x10-5
2-4(12)m	Silty Sand/ Sandy silts with Clayey Sand	18	0-3	27-29	EXP(Z+2. 85)/ 3.15	0.52	0.3	1x10-5
4-8m	Residual Soil	19	3-5	27-30	100	0.52	0.3	1x10-6

Table 1 : Geotechnical Parameters for Soil

The depths of soil and its types from ground surface to bedrock contact is variable. A tentative stratification interpreted is shown in the Geological L-Section developed from the available borehole data. Depending on the local topography/Geomorphological setup, the thickness of soil layers can increase beyond the general thickness anticipated (given in brackets)

		Design Parame	eters for Roc	k Mass			(G	eneral	Case) D)= 0			
Overbi (m)	urden	Strata	Grade	Yb	GSI	σci	(MR)	Ko	Em	mu	(c)	(Ø')	(k)
				[kN/m3]	[-]	[MPa]			[MPa]	[-]	[MPa]	[o]	[m/sec]
<30	Laterite	CW -HW	V-IV	23	15	25	400	0.42	300	0.30	0.6	22	1x10-5
		MW*	III	25	40	35	465	0.35	1600	0.26	1.8	30	1x10-6
		MW	III	25	40	45	500	0.35	3600	0.26	2.7	37	1x10-7
	>30	SW	II	26	70	55	500	0.27	15000	0.22	5.0	45	1x10-8
		FR	Ι	26	80	75	525	0.25	35000	0.20	8.0	50	1x10-8

Table 2 : Geotechnical Parameters for Rock

A Case for segregating the Design Parameters for rock mass based on Overburden thickness (wrt Formation Level) has been interpreted, to consider for the marginally lower competence in the Moderately weathered rock masses (MW) under influence of deeper influence of weathering, applicable for portal areas, drain/ nalla sections, Shafts etc. The valuations are evaluated for the General case, as per RocLab.

For the analysis of deep excavation and from the data available the nearest geological data near to the deep cut section is considered, which is the conservative due to higher thickness of soil layer and the parameters considered for the design are tabulated below.

Fable 3 : Geotechn	ical Design Param	eters for Soil -Deep	Excavation
--------------------	-------------------	----------------------	------------

		Undrained Parameters			Dı					
Depth below GL	Strata	¥	c	φ	Е	c'	φ'	Е'	Ko	k
[m]		[kN/m3]	[kPa]	[o]	[MPa]	[kPa]	[0]	[MPa]		[m/sec]
0.0-7.5	Fill Material	16	0	30	6	0	25	5+1.5Z	0.58	5x10 ⁻⁷
7.5-12	Silty Sand/ Clayey Sand	18	0	30	30	2	25	25	0.58	1x10 ⁻⁷

Rodic Consultants Pvt. Ltd

										Slo	pe	
Depth below GL	Strata	Grade of Rock	¥	GSI	NCS	Ei	$\mathbf{K_{o}}$	Em	^	C,	φ,	Я
[m]			[kN/m ^{3]}	[-]	[MPa]	[GPa]		[GPa]	[-]	[MPa]	[0]	[m/sec]
12-22	Completely to Highly Weathered	V-IV	22	25	25	10	0.43	0.3	0.3	0.12	39	1x10 ⁻⁶
22-30	Moderately Weathered rock	III	25	45	35	16.65	0.33	1.3	0.25	0.25	52	1x10 ⁻⁷
>30	Slightly Weathered to Fresh Rock	II-I	26	80	55	30.2	0.25	14.4	0.2	1.3	65	1x10 ⁻⁸

Table 4 : Geotechnical Design Parameters for Rock -Deep Excavation

Rodic Consultants Pvt. Ltd

CHAPTER 4: LAYOUT

Temporary shafts are located in the project area for the launch / retrieval of TBM as well for the zones of Cut and Cover and Ramp portion. The excavation support consists of a combination of secant pile wall with steel waler beam and ground anchors, and the details of the secant pile is mentioned below.

4.1 General Section detail for secant pile

Th secant pile wall would be used to support the excavation of shaft / Cut and Cover. Secant pile walls consist of an alternate series of unreinforced soft piles (M15 grade) and reinforced hard piles (M35 grade). Initially, a 1.0m / 0.8m diameter soft pile will be installed in the ground, once the soft pile is constructed, 1.0m diameter of the hard pile will be installed in the ground with overlap of 200mm/150mm between the hard and soft pile. The general details of the secant pile arrangement is show in the figure below

Figure 1: Typical Section Detail of Deep Excavation for Shaft & Cut and Cover Zone

Page 9 of 30

Bruhat Bengaluru Mahanagara Palike

Figure 3: General details of Secant piles of 0.8m Diameter

4.2 Overlapping

The unreinforced soft pile will be installed in the ground 1.0m/0.8m diameter. Once the soft pile (M15) has been constructed, 1.0m/0.8 diameter of the hard pile (M35) will be installed in the ground with an overlap of 200mm/150mm between the soft and hard pile.

The maximum vertical tolerance of the finished secant pile is 1 in 200. For 12m height of pile the maximum deviation is 60mm at soffit of pile.

As temporary casing would be used during casting of secant pile, therefore uncertainty related to positioning of pile center is reduced to practically zero.

CHAPTER 5 MATERIAL PROPERTIES

11111111111020 192 ngz 047

Consultancy services for preparation of DPR for the work of Construction of underground Vehicular Tunnel from Hebbal Esteem mall junction to Silk Board

Draft Detailed Project Report

Rodic Consultants Pvt. Ltd

CHAPTER 5: MATERIAL PROPERTIES

The material properties values provided in this section refer only to design values. The requirements of the Technical Specification ref Table, still apply and need to be achieved and verified in the field.

5.1 Concrete

The hard pile is proposed with a minimum M35 grade of concrete according to IS 456:2000. The following properties of the concrete are stated in Table 5.

Parameter	Unit	Value
Pile Diameter	М	0.8 / 1.0
Grade of Concrete	-	M35
Characteristic Compressive Strength (28 days)	MPa	35
Young's modulus (E _{conc}) ₃₅	MPa	29580
Spacing	m	1.3 / 1.6
Unit weight	kN/m ³	25
Poisson's ratio	-	0.2
Soft Pile to hard pile overlap	[m]	0.15 / 0.2

Table 5 : Properties of M35 grade concrete for Hard Pile.

5.2 **Sprayed Concrete**

The early strength development of sprayed concrete shall be according to the Austrian Guidelines for Sprayed Concrete, April 2013 and should conform to Class J2 (between B and C) as shown in the Figure 4. The following typical parameters for the properties of shotcrete are stated.

Table 6 : Early Strength Development of Sprayed Concrete

Unit	Value
-	M25
MPa	25
MPa	25000
kN/m ³	24
-	0.2
	Unit - MPa MPa kN/m ³ -

Page 11 of 30

Bruhat Bengaluru Mahanagara Palike

Draft Detailed Project Report

The thickness of sprayed concrete lining will vary from 10 cm to 30 cm depending on the support class and NATM tunnel section size.

5.3 Steel Fiber Reinforced Shotcrete (SFRS)

Steel fibres can be added to sprayed concrete as a reinforcement supplement. The steel fibres shall be in accordance with IS 432. The fibre dosage and type shall be arrived after the field tests that suit the required strength of Sprayed concrete used in the design. However as per IS 15026, the minimum criteria of important parameters for steel fibres are provided below.

- Geometrical shape= Length of fibres (20 to 40mm) & Recommended sizes are 25 to 35mm x 0.40mm diameter.
- Aspect Ratio (Length / Equivalent diameter) = 60 to 75.
- Ultimate tensile strength= > 1000 MPa

5.4 Rock Bolts

Rock bolt support measures will consist of fully grouted steel rebar rock bolts.

Parameter	Unit	Value
Grade of Steel	-	Fe 500D
Туре	-	Fully Grouted (SN)
Design Strength	kN	350 / 213
Diameter	mm	32 / 25

Table 7 : Rock bolt support measures

5.5 Pre-stressed soil anchors in secant pile (Tie Back)

Table 8 : Pre-stressed soil anchors in secant pile

Parameter	Unit	Value
Туре	-	PT Anchor
Design Capacity	kN	As per design
Anchor Length	m	Varies
Bond Length	m	5
Pretension Force	kN	Varies
Bond strength*	kN/m2	500 As per IS 14448
Hole Dia	mm	150
Pullout Capacity*	kN/m	π x hole dia x bond strength = 235

*To be confirmed at site

5.6 Lattice Girders

Two types of lattice girders are used depending on the thickness of the sprayed concrete liner used.

- Steel Grade: Fe500D (as per IS1786-2008)
- Types: 90/20/25130/25/32

5.7 Pipe roof

A pipe roof is a special type of long forepoling (typically 9-15m). Pipe roof is required in the low cover zone and as well to treat the soft zones (soil/ weak rock) especially in the crown portion and enhance the tunnel stability. The fore poling elements shall consist of steel pipes hollow in nature, the length and spacing of the pipes shall be as per the design and drawings.

• 114mm Dia. pipe with 6.3mm thickness

Consultancy services for preparation of DPR for the work of Construction of underground Vehicular Tunnel from Hebbal Esteem mall junction to Silk Board KSRP junction

Draft Detailed Project Report

Rodic Consultants Pvt. Ltd

These loosening zones can develop into collapses, especially when the overburden is low.

Figure 5: Without forepoling

Figure 6: With Forepoling

The design of the Pipe roof is based upon the assumption that the overburden stress is there during excavation when the round is open (i.e. right after opening, with no other support). The calculation of center-to-center distance of Pipe roof takes into account the number of Pipe roof layers above the opened round. The Pipe roof is regarded as beams which are loaded up to the yield load. It has to be stated that under normal conditions this approach is rather conservative as the arching in the immediate excavation area is not taken into account. The loading for the Pipe roof design is estimated as per the figure given below:

Figure 7: Terzaghi's equation for estimation of vertical load

Page 13 of 30

The detailed calculations of Pipe roof are given in Annexure 5.

Bruhat Bengaluru Mahanagara Palike

Face Stability

Tunnel face stability for heading excavation is assessed using Terzaghi vertical load (Silo theory). The tunnel face stability during excavation is evaluated depending on the basis of ground parameters and the temporary support method. The detailed calculations of tunnel face stability are given in Annexure 6.

Page 14 of 30

CHAPTER 6 LOADS & LOAD COMBINATION

111111111110 D97 097 047

CHAPTER 6: LOADS & LOAD COMBINATION

6.1 Loads

For the purpose of computing stresses and deformations, the following minimum load types and consequential effects shall be considered as applicable.

Loads	Symbol
Dead loads	DL
Earth Pressure	EP
Surcharge	SR
Hydrostatic	WP

Table 9	:	Minimum	Load	Types	and (Conseq	uential	Effects
				~ .				

i. Dead Loads

The design will consider all dead loads that will act on the structure, including the self-weight of the structure. The unit weight of the reinforced concrete will be considered as 25 kN/m³ and for plain concrete it will be 24 kN/m³.

ii. Earth Pressure

The effective lateral earth pressure is equal to the product of load due to the weight of overburden and coefficient of lateral earth pressure K_{0} .

iii. Water Pressure

As no level has been reported in BH, the water level from the adjacent lakes is considered. For the derivation of hydrostatic pressure, the maximum groundwater level considered at 5m bgl for design purpose as per the available information.

iv. Earthquake Load

The proposed structures are temporary in Nature, no seismic analysis shall be considered for the design.

v. Surcharge Loads

The design shall also consider loads from surrounding structures for a value of 60 kN/m²

6.2 Load Factors

The following load factors will be considered in the design of the Secant pile with waler:

5.3 Partial Factors of Safety for Materials

The design strengths are obtained by dividing the characteristic strength by the material factors defined below:

Material	Ultimate (ULS)	Serviceability (SLS)
Concrete	1.5	1.0
Reinforcement	1.15	1.0

Table 10: Partial Factors of Safety for Materials

6.4 Factor of Safety

The Factor of safety for slope stability based on temporary support system shall be 1.3 for static case.

Page 15 of 30

Rodic Consultants Pvt. Ltd

CHAPTER 7 MODELLING & ANALYSIS

11111111111102 197 057 0⁴⁷

Consultancy services for preparation of DPR for the work of Construction of underground Vehicular Tunnel from Hebbal Esteem mall junction to Silk Board KSRP junction

Draft Detailed Project Report

CHAPTER 7: MODELLING & ANALYSIS

The numerical analysis for complete excavation of Shafts & Cut and Cover portion has been carried out with support system as secant pile walls, ground anchors, rock bolts & Sprayed Concrete is carried out in the FEM software RS2 [1]. The pile depth will vary as per geological conditions along the Cut and Cover or Shaft portion. Analysis has been carried out for 2 cases with 32m deep excavation (Shaft & CNC) as well 12m deep excavation for Ramp portion.

7.1 Numerical Analysis

The software used for the numerical analysis is the two-dimensional finite element software RS2 . RS2 is a powerful and user-friendly finite-element (FE) package for 2D analysis of deformation and stability in geotechnical engineering and rock mechanics. It is used in geotechnical challenges ranging from excavations, embankments, onshore or offshore foundations to tunneling, mining, and reservoir geomechanics.

RS2 employ various constitutive models ranging from simple linear to advanced highly nonlinear models that allow accurate simulation of most soil and rock types. The material behaviour of the ground is simulated according to material model by Mohr-Coulomb considering drained condition.

The 2D plane strain analysis is used to simulate the deep excavation and support sequences. The half model representing the symmetrical model is considered with Graded 6node triangular element with mesh type. External boundaries of the model are considered far from excavation so that they are not influenced by the excavation impact. The external boundaries of the model are fixed in the horizontal direction on each side, which means that vertical movement is allowed, and the bottom part of the boundary is pinned, so both vertical and horizontal movements are fixed. The top surface of the model represents the ground surface, and it is free in both directions.

In RS2 secant pile and sprayed concrete lining is modelled as plate element with, properties are elastic and isotropic in nature. Secant pile wall is supported with PT anchors at different levels along with rock bolts to resist the movement of pile for stable excavation.

The representative cross section consist of encountered stratification is considered for numerical analysis. The Figure 8 & Figure 9 below shows a typical FEM analysis cross section considered for 32m pile depth & 12m Pile depth case to simulate the excavation and support system.

Figure 8: Typical FEM cross section for 32m Deep Excavation

Bruhat Bengaluru Mahanagara Palike

Page 17 of 30

Rodic Consultants Pvt. Ltd

Consultancy services for preparation of DPR for the work of Construction of underground Vehicular Tunnel from Hebbal Esteem mall junction to Silk Board KSRP junction L

Draft Detailed Project Report

FEM Modelling Stages

7.2

The excavation and behaviour of deep excavation for shafts / Cut and Cover and Ramp portion is simulated as per step-by-step process through numerical analysis. The **Table 11 & Table 12** below show the steps involved in performing FEM analysis for 2 cases (32m & 12m Deep).

Table 11. FEW modeling stages to sinulate 32m Deep excavation (Sharts / C&C)	Table 11: FI	EM modelling	stages to simula	ate 32m Deep ex	xcavation (Shafts	/ C&C)
--	--------------	--------------	------------------	-----------------	-------------------	--------

Construction	
Stage	Description of calculation stages
Number	
1	Grid setup and initial stress field, reset displacement to zero and set design water table of 5.0m BGL
2	Activation of surcharge load of 60 kPa, reset displacement to zero
3	Installation of secant pile of 1m dia, Reset displacement to zero
4	Excavate in soil up to 2m from ground level
5	Installation of 1st level of Support-Anchor @ 1.5m BGL
6	Excavate further 2.0m in soil i.e., upto 4.0m BGL
7	Excavate further 2.0m in soil i.e., upto 6.0m BGL and lowering the water table up to 1m from excavation level i.e., 7.0 m BGL
8	Excavate further 2.0m in soil i.e., upto 8.0m BGL and lowering the water table up to 1m from excavation level i.e., 9.0 m BGL
9	Excavate further 2.0m in soil i.e., upto 10.0m BGL and lowering the water table up to 1m from excavation level i.e., 11 m BGL
10	Installation of 2 nd level of Support- Anchor @ 8.5m BGL
11	Excavate further 2.0m in soil i.e., upto 12.0m BGL and lowering the water table up to 1m from excavation level i.e., 13 m BGL
12	Excavate further 2.0m in soil i.e., upto 14.0m BGL and lowering the water table up to 1m from excavation level i.e., 15 m BGL
13	Installation of 3 rd level of Support- Anchor @ 12.0m BGL
14	Excavate further 2.0m in soil i.e., upto 16.0m BGL and lowering the water table up to 1m from excavation level i.e., 17 m BGL
15	Installation of 4 th level of Support- Anchor @ 12.0m BGL
16	Excavate further 2.0m in soil i.e., upto 18.0m BGL and lowering the water table up to 1m from excavation level i.e., 19 m BGL
17	Excavate further 2.0m in soil i.e., upto 20.0m BGL and lowering the water table up to 1m from excavation level i.e., 21 m BGL
18	Installation of 5 th Level of Support -Rock Bolt i.e., 18.5m BGL
19	Excavate further 2.0m in soil i.e., upto 22.0m BGL and and maintain zero groundwater pressure at rock level
20	Installation of 5 th Level of Support -Rock Bolt i.e., 21.5m BGL
21-27	 From start of rock level to final excavation level (Excavation in Rock) Excavate in stages of 4m till final stage of excavation. Maintain zero groundwater pressure at rock levels (i.e. lowering of water table up to excavation level) Installation of rock bolts
	Installation of sprayed concrete after each stage of excavation

Table 12: FEM modelling stages to simulate 12m Deep excavation (Ramp Portion)

Construction Stage Number	Description of calculation stages
1	Grid setup and initial stress field, reset displacement to zero and set design water table of 5.0m BGL
2	Activation of surcharge load of 60 kPa, reset displacement to zero
3	Installation of secant pile of 0.8m dia, Reset displacement to zero

Consultancy services for preparation of DPR for the work of Construction of underground Vehicular Tunnel from Hebbal Esteem mall junction to Silk Board 11 KSRP junction

Draft Detailed Project Report

Construction Stage Number	Description of calculation stages					
4	Excavate in soil up to 2m from ground level					
5	Installation of 1 st level of Support-Anchor @ 1.5m BGL					
6	Excavate further 2.0m in soil i.e., upto 4.0m BGL					
7	Excavate further 2.0m in soil i.e., upto 6.0m BGL and lowering the water table up to					
1	1m from excavation level i.e., 7.0 m BGL					
8	Excavate further 2.0m in soil i.e., upto 8.0m BGL and lowering the water table up to					
0	1m from excavation level i.e., 9.0 m BGL					
0	Excavate further 2.0m in soil i.e., upto 10.0m BGL and lowering the water table up to					
9	1m from excavation level i.e., 11 m BGL					
10	Installation of 2 nd level of Support- Anchor @ 8.5m BGL					
11	Excavate further 2.0m in soil i.e., upto 12.0m BGL and lowering the water table up to					
11	1m from excavation level i.e., 13 m BGL					

Annexure 1 for RS2 Input and Output results.

Page 19 of 30

CHAPTER Ś RESULTS SUMMARY - DEEP EXCAVATION

CHAPTER 8: RESULTS SUMMARY - DEEP EXCAVATION

8.1 Analysis Results

The below shows the numerical analysis results for the two cases of 32m and 12m deep excavation.

Table 13: FEM analysis results (Maximum Unfactored forces) for 32m and 12m Excavation depth

Excavation Depth	Axial Force (KN/m)	Bending Moment (kN-m/m)	Shear Force (kN/m)	Horizontal Dis. (mm)	Load Case
32m	1510	790	299	35	60 lrDa
12m	511	543	131	24	60 KPa

8.1.1 Global Stability:

Strength reduction factor (SRF) tool of RS2 is adopted to get the factor of safety for slope stability analysis. The Factor of Safety is estimated at end of excavation stages. The shear strength reduction option performs a finite element slope stability analysis and computes a critical strength reduction factor for the model. The critical strength reduction factor is equivalent to the "safety factor" of the slope. The FoS is compared to the minimum desired value of 1.3 for temporary works at the end of excavation stages.

Table 14: Global Stability Check for for 32m and 12m Excavation depth

Excavation Depth	FOS-Static	Load Case
32m	1.35	60 lrDa
12m	2.25	00 KPa

Table 15: Summary of Anchor/ Bolt Forces -FEM Analysis

Pile Depth	Support	Level (m)	Load Case	Anchor/ Bolt Forces (kN)
	Anchor-1	1.5m bgl		691
	Anchor-2	8.5m bgl		555
2 2 m	Anchor-3	12m bgl		628
52111	Anchor-4	15.m bgl	60 kPa	641
	Rock Bolt-1	18.5m bgl		193
	Rock Bolt-2	21.5m bgl		202
12m	Anchor-1	1.5m bgl		478
12111	Anchor-2	8.5m bgl		439

8.1.2 Support Summary

The following table shows the recommended support system.

Table 16: Support Summary for Secant Pile wall

Excavation	Support Measure									
Depth		Anchor			Case					
	Anchor Length (m)	Hor. Spacing (m)	Inclination (Deg)	Bolt Length (m)	Spacing (m)	Inclination (Deg)				
	35	1.6 (H)	40	10m	3.2 (H)	30				
22	29	1.6 (H)	35	10	3.2 (H)	30	60 lrDa			
32m	25	3.2 (H)	30	-	-	-	00 KPa			
	18	3.2 (H)	30	-	-	-				
12.00	24	2.6 (H)	30	-	-	-	60 lrDa			
12m	20	2.6 (H)	30	-	-	-	oo kra			

8.2 Open cut support summary

8.2.1 Local Stability

The Kinematic analysis is to be performed based on face mapping data. In absence of structural data, the slope support for rock face has been carried out using stress analysis in FEM and found to be safe with the provided support.

For the 32m deep excavation, the remaining depth to be excavated in hard rock which is already explained in the FEM modelling analysis. The **Table 17** below shows the complete summary of support elements proposed in deep excavation design.

Excavation Support Recommendations (Depth: 22m to 32m)					
Sprayed Concrete	M30, 100mm thick				
Wire mesh	150/150/6.0 mm (1 layer)				
	Excavation in Rock (Rock Support)				
	Rock grade III				
	• Fully grouted, 4m long, 25mm dia SN bolt, 213kN				
Dools Dolta	• spacing 2.0m (V) x 3.0m(H) Staggered				
ROCK DOILS	Rock grade I/II				
	• Fully grouted, 4m long, 25mm dia SN bolt, 213kN				
	 spacing 3mx3m Staggered 				
	Spot Bolting (If required)				
Drainage holes	50mm dia, 6m long @6x6 spacing				

Table 17: Support Summary – Open Cut

8.2.2 Pile Bearing Capacity Check

The secant pile load carrying capacity is derived in accordance with IRC 78 Table, considering only the end bearing in grade III (MW) rockmass for 32m deep excavation and in end bearing in grade IV-V (CW-HW) rockmass for 12m deep excavation.

The total axial on the secant pile wall is taken from the pile tip from the analysis output for all the pile cases, which is verified against the pile bearing capacity check. Refer **Annexure-2** for bearing capacity calculation of secant pile walls.

8.2.3 Toe Stability Check

A toe stability check is performed for the determination of suitable embedment depth of secant pile wall for 32m and 12m excavation depth with water table at 5.0m BGL using the widely accepted method suggested in Euro code- EC7.

In toe stability check minimum required toe embedment is calculated by ensuring FOS=1.3.

Refer Annexure – 3 for Toe Stability check

8.2.4 Structural Reinforcement Detail Design for secant pile wall

The structural design is carried out in accordance with IS 456 with load combination as discussed in Chapter-6. As a general construction practice, a crack width check is not done for temporary structures, hence no check for cracks will be carried out.

All components of the secant pile and associated elements have been checked for Ultimate Limit State only.

For detailed calculations refer Annexure – 5 & 6 of Structural Report (I40172-STR Design report)

CHAPTER 9 NATM TUNNEL

CHAPTER 9: NATM TUNNELS

Draft Detailed Project Report

Rodic Consultants Pvt. Ltd

9.1 NATM Tunnel – Design Basis

Bruhat Bengaluru Mahanagara Palike

9.1.1 **Typical Cross Section of NATM Regular Section**

The following typical cross section for NATM Regular section 2 lane and 1 lane as shown in the figure below, shall be considered for concept design of primary and secondary lining.

Figure 10: Typical Regular cross-section of NATM- 2 Lane

Page 22 of 30

Consultancy services for preparation of DPR for the work of Construction of underground Vehicular Tunnel from Hebbal Esteem mall junction to Silk Board KSRP junction Dra

Rodic Consultants Pvt. Ltd

Design Approach

The design methodology covers the design phases (preliminary design & detail design) prior to construction. The design will be refined and adjusted during construction in an "observational approach".

The tunnel support system consists of two generally independent lining systems:

- The primary (outer) support consisting of rock bolts, sprayed concrete if necessary reinforced with wire mesh or alternatively steel fibres, and lattice girders. All support measures are installed each round immediately after tunnel excavation. The primary lining is designed to provide immediate support during the change in stress state and stability of the excavation until the inner lining is installed.
- The final (inner) lining, constructed of plain or reinforced concrete, is designed to sustain all internal and external forces without considering the bearing capacity of the primary lining.

The primary support design shall be based on well accepted analytical methods and/or finite element analysis.

Design for the NATM tunnelling sections will be driven by the following philosophy:

- Flexibility in design in the framework of the existing contract
- Employment of State-of-the-Art materials and construction methods

The following flowchart shows the general design approach for the primary lining of NATM tunnelling sections.

Page 23 of 30

9.2

Bruhat Bengaluru Mahanagara Palike

Consultancy services for preparation of DPR for the work of Construction of underground Vehicular Tunnel from Hebbal Esteem mall junction to Silk Board KSRP junction

Draft Detailed Project Report

Rodic Consultants Pvt. Ltd

The main task of the geotechnical design is the economic optimization of the construction considering the ground conditions as well as safety, long term stability, and environmental requirements. The variability of the geological composition including the local ground structure, ground parameters, stress and groundwater conditions requires that a consistent and specific procedure be used during the design process. The key influences governing the geotechnical design are the ground conditions and Ground Behavior.

Geotechnical design is typically accomplished in two main phases, namely the design phase and the construction phase.

9.3 Design Consideration for Primary Support

Primary lining design would be taking a direct reference of Austrian guidelines being them the most appropriate document for NATM design. The manual is in compliance to employer requirement.

The NATM method is based on the concept of the Observational Approach and relies on Geotechnical Monitoring during execution.

Based on the geological-geotechnical data available from the geotechnical investigations, different support classes shall be developed for different tunnelling sections which reflect the support measures for different ground conditions encountered. Due to the nature of the ground, combinations of soil types are possible and are expected to be encountered during tunnelling.

The primary support, which consists of sprayed concrete, generally reinforced by wire mesh, or steel fiber/polypropylene fiber reinforced sprayed concrete, lattice girders (where required) and rock bolts/soil nails, will provide the immediate support and stability of the excavation. The inner lining, which consists of cast in-situ concrete (plain or reinforced), will provide the long-term support and durability of the tunnel.

A subdivision of the tunnel cross-section into top heading and bench/invert may be required, as well as fore poling for crown stability and face bolting & face sealing sprayed concrete will be required for face stability depending on the ground conditions. Further it is required to close the supporting ring immediately for all soil and soil like support classes. It may be required to excavate the top heading in multiple sections to further reduce the deformations and guarantee a smooth load transfer in case soft / weak ground is encountered.

The adjustment and refinement of the primary support, as well as its applicability for different ground conditions identified by regular face mapping and probe drilling will be carried out with basis on the evaluation of the results of the geotechnical monitoring, which constitutes an essential element of the proposed construction method. Geotechnical Monitoring is carried out at instrumentation sections installed at regular and specific spacing along the tunnel.

9.4 Design Phase

This phase involves the determination of expected ground properties, the classification into Ground Types (GT), the assessment of the Ground Behaviours (GB), its categorization into Behaviour Types (BT), as well as the determination of support measures derived from the Ground Behaviour under consideration of the project specific boundary conditions. On this basis the expected system Behaviour (SB) is predicted.

9.5 Ground Types

Bruhat Bengaluru Mahanagara Palike

A Ground Type is defined as a geo-technically relevant ground volume, including discontinuities and tectonic structures, which is similar with respect to following properties

- in rock: mechanical properties (intact rock rock mass), discontinuity characteristics and properties, rock type, rock- and rock mass conditions hydraulic properties
- in soil: mechanical properties, grain size distribution, density, mineral composition, parameters of the soil components, matrix parameters, water content and hydraulic properties

Page 24 of 30

Draft Detailed Project Report

Different Ground Types have different characteristic parameters that influence their mechanical behaviour. To determine different ground types relevant key parameters, have to be evaluated and defined. Different ground masses with similar combinations of relevant parameters are distinguished as one Ground Type.

The final task in this step is to assign the Ground Types to the alignment.

9.6 **Behaviour Types**

The extraneous factors like excavation of the tunnel (shape and size), ground stresses, ground water conditions influence the behaviour of individual ground types. The guidelines for geotechnical design with conventional excavation published by Austrian Society of Geomechanics identifies a set of ground behaviour types, tabulated below:

Ba	sic Categories of Behaviour	Description of potential failure modes/ mechanisms during
	Types (BT)	excavation of the unsupported ground.
1	Stable	Stable ground with the potential of small local gravity induced falling or
		sliding of blocks.
2	Potential of discontinuity	Voluminous discontinuity controlled, gravity induced falling and sliding
	controlled block fall	of blocks, occasional local shear failure on discontinuities.
3	Shallow failure	Shallow stress induced failure in combination with discontinuity and gravity controlled failure.
4	Voluminous stress induced	Stress induced failure involving large ground volumes and large
	failure	deformations
5	Rock burst	Sudden and violent failure of the rock mass, caused by highly stressed
		brittle rocks and the rapid release of accumulated strain enenry.
6	Buckling	Buckling of rocks with a narrowly spaced discontinuity set, frequently
		associated with shear failure.
7	Crown failure	Voluminous overbreaks in the crown with progressive shear failure.
8	Ravelling ground	Ravelling of dry or moist, intensely fractured poorly interlocked rocks or sil with low cohesion.
9	Flowing ground	Flow of intesely fractured, poorly interlocked rocks or soil with high
		water content
10	Swelling ground	Time dependent volume increase of the ground caused by physical-
		chemical reaction of the ground and water in combination with stress
		relief.
11	Ground with frequently	Combination of several behaviours with strong local variations of
	changing deformation	stresses and deformation over longer sections due to heterogeneous
	characteristics.	ground (i.e. in heterogeneous fault zones; block-in-matrix rock, tectonic
		melanges)

Fable 18: Ground Behaviour Typ

9.7 **Calculations according to Duddeck/Erdmann**

This analytical calculation approach uses elastic, uniform soil/rock conditions and full shear bond between the elastic lining and the subsoil. Further circular shaped full-face excavation is assumed. As result of the Erdmann / Duddeck calculation normal forces N, bending moments M and shear forces V in the sprayed concrete shell at the crown, bench and invert - sections are obtained.

The analysis after Erdmann/Duddeck is generally used for shallow tunnels with a low stress-level.

9.8 **Numerical Analysis**

Numerical analysis of tunnel initial support shall be carried out using finite element software RS2 from Rocscience. The tunnel initial support estimated from empirical method shall be considered and verified with Numerical analysis to check the excavation stability in terms of ground movements at tunnel excavation boundary.

Consultancy services for preparation of DPR for the work of Construction of underground Vehicular Tunnel from Hebbal Esteem mall junction to Silk Board KSRP junction

Draft Detailed Project Report

Rodic Consultants Pvt. Ltd

Actual representation of site conditions (shallow overburden and deep overburden) with actual topography along the tunnel cross-section and tunnel construction sequence can be modelled in Finite Element Modelling (FEM). From the FEM analysis, all the values of closure shall be checked within permissible limits with the proposed support system.

9.9 Construction Phase

During construction, all ground parameters relevant to the geotechnical design must be collected, recorded, and evaluated to determine the ground type. Considering these influencing factors, the actual system behaviour in the excavation area is assessed according to the stipulations of the design.

The basic procedure for geotechnical design begins with the determination of the Ground Types and ends with the definition of the excavation classes. The outline of the design procedure during construction phase is illustrated in the flow chart shown in Figure 13.

Figure 13: Flow chart showing geotechnical design procedure during construction.

Page 26 of 30

Bruhat Bengaluru Mahanagara Palike

Rodic Consultants Pvt. Ltd

9.10 Construction Material Properties

For Construction material properties refer chapter -5

9.11 Design loads and Safety Factors

For loads and load factors refer Chapter - 6.

9.11.1 Earth Pressure

The Earth pressure acting on the lining will be the result of the interaction between the ground surrounding the tunnel, the deformation of the ground during excavation support installation and the bending and axial stiffness of the lining. The earth pressure for the analysis is derived in consideration of overburden and soil weight.

9.11.2 Water Load

For "drained" tunnels, water pressures are not considered as design load case. Weep holes and drainage holes shall ensure that no water pressure builds up.

9.11.3 Earthquake

For the primary supports, no earthquake loads will be considered. It is common practice in NATM design to consider earthquake loads for the final lining in specific situations only and not at all for the primary supports.

9.12 Analysis Results for Primary Support

The analysis is carried out according to Duddeck Erdmann analysis. For low overburden cases Duddeck Erdmann analysis falling in soil, completely to highly weathered, (CW-HW), Moderately weathered rock (MW) and Fresh or slightly weathered rock (SW) [10], [11] will be done, as this method is best suited for tunnels with shallow overburden. For the purpose of analysis, the maximum cross section of NATM regular section is considered. The geotechnical parameters are considered from the GIR [1] for analysis.

9.12.1 Results of Analysis according to Duddeck/Erdmann NATM Regular Section 2 Lane

The results of the analysis for different cases are tabulated in the Table 19. The detailed calculations are given in the **Annexure 4**.

Analys			Crown		Side Wall			Invert		
Analys	Ground type/	N _{max}	M_{max}	V _{max}	N _{max}	M _{max}	V_{max}	N _{max}	M_{max}	V_{max}
15 No	Support class	[kN/	[kN-	[kN/	[kN/m	[kN-	[kN/	[kN/	[kN-	[kN/
190.		m]	m/m]	m]]	m/m]	m]	m]	m/m]	m]
1	SW/SC-I	-10.15	0.02	0	78.76	-0.02	0	-10.15	0.02	0
2	MW/SC-II	134.4	1.23	0	1007.2 0	-1.23	0	134.4 5	1.23	0
3	CW/Soil/SC- III	978.0 7	41.83	0	1491.8 2	-41.83	0	978.0 7	41.83	0

Where:

N_{max} maximum normal force

M_{max} maximum bending moment

V_{max} maximum shear force

The Support classes assigned for the SW, MW, CW/Soil and overburden prove to be sufficient and undergo sustainable deformations before the equilibrium is attained.

Page 27 of 30

The analytical calculation results according to Duddeck / Erdmann show that the support classes defined are sufficient and within M-N curve limits as well as the deformation in the tunnel wall and formation of plastic zone within the allowable limits.

9.12.2 **Proposed Primary Support for NATM Regular Section 2 Lane**

For the NATM based on the geology of NATM Regular Section 2 Lane has been divided into three support classes, i.e., (SC-I, II & III) and provided in Table 20.

Stage	Support Class (SC)	SC-I	SC-II	SC-III	
	Rock type	I-II/ SW/Fresh	III/MW	V/CW -Soil	
	Excavation	Heading + Invert	Heading + Invert	Heading +Bench +Invert	
	Round Length, m	2.5	1.5	1	
	SPrC (M25)	100 mm 200 mm		300 mm	
	Bolts	Spot bolting	SN 25mm, 4m long, 2m x 1.5 m spacing	SN/SD 25mm/R32, 6m long, 1m x 1 m spacing	
	Forepole			-	
TOP HEADI NG	Pipe roof	-	-	114mm, thick ness 6.3mm Dia pipe @ 0.3m C/C, length - 12m, 4m Overlap	
	Lattice Girder	-	90/20/25	130/25/32	
	Wire mesh	-	-	-	
	Fibers	Steel fibre - 25kg/m3	Steel fibre - 30kg/m3	Steel fibre - 30kg/m3	
	Face bolts	-	-	9 no's - SD R32, 9m long, 3m overlap	
	Face sealing (M25)	-	100 mm	150mm	
	Round Length, m	-	-	2	
DENCU	SPrC (M25)	100mm	200mm	300 mm	
INC	Lattice Girder	-	-	130/25/32	
ШG	Bolts	-		SN/SD 25mm/R32,	
				6m long, 1m x 1 m spacing	
	Round Length, m	5	3	2	
INVERT	SPrC (M25)	100 mm	200 mm	300 mm	
-	Lattice Girder	-	-	130/25/32	

Table 20: NATM Regular Section 2 Lane Support Class

9.12.3 Results of Analysis according to Duddeck/Erdmann NATM Vehicular Cross passage

The results of the analysis for different cases are tabulated in the Table 21. The detailed calculations are given in the Annexure 4.

	Ground	Crown			Side Wall			Invert		
Analysis	type/	N _{max}	M _{max}	V _{max}	N _{max}	M _{max}	V _{max}	N _{max}	M _{max}	V _{max}
No.	Support class	[kN/m]	[kN-m/m]	[kN/m]	[kN/m]	[kN-m/m]	[kN/m]	[kN/m]	[kN-m/m]	[kN/m]
2	MW/SC-II	106.9	1.2	0	650.4	-1.2	0	106.9	1.2	0

Table 21:	Duddeck/Erdmann	analysis	results
-----------	-----------------	----------	---------

Where:

N _{max}	maximum normal force
M _{max}	maximum bending moment
V _{max}	maximum shear force

The Support classes assigned for the Grade III (MW) and overburden prove to be sufficient and undergo sustainable deformations before the equilibrium is attained.

The analytical calculation results according to Duddeck / Erdmann show that the support classes defined are sufficient and within M-N curve limits as well as the deformation in the tunnel wall and formation of plastic zone within the allowable limits.

9.12.4 Proposed Primary Support for NATM Vehicular Cross Passage 1 Lane

For the NATM based on the geology of NATM Regular Section 1 Lane has been divided into SC-II and provided in Table 22.

Stage	Support Class (SC)	SC-II		
	Rock type	III/MW		
	Excavation	Heading + Invert		
	Round Length, m	1.5		
	SPrC (M25)	200 mm		
	Bolts	SN 25mm, 4m long, 2m x 1.5 m spacing		
	Forepole	-		
TOP HEADING	Pipe roof	-		
	Lattice Girder	90/20/25		
	Wire mesh	-		
	Fibers	Steel fibre - 30kg/m3		
	Face bolts	-		
	Face sealing (M25)	100 mm		
	Round Length, m	-		
	SPrC (M25)	-		
BENCHING	Lattice Girder	-		
	Bolts	-		
	Round Length, m	3		
INNTEDT	SPrC (M25)	200 mm		
INVERI	Bolts	-		

Table 22: Support Class-Vehicular	Cross Passage-	1 Lane	(NATM)
-----------------------------------	----------------	--------	--------

According to Duddeck/Erdmann analysis done for ground type (Soil / Rock) for the existing overburden conditions, the combined system "rock mass / support measures" does not fail and the system behaviour remains stable. This can be attributed to the load-bearing capacity of the rock mass, which is able to take on the additional stresses, and to the properties of the modelled support system, which has sufficient ductility to accommodate the non-elastic deformations occurring.

It has to be emphasized that a comprehensive monitoring program during construction is part of the design (observational approach) to allow for a continuous assessment of the primary lining behaviour and the verification of the design assumptions. The excavation sequence in terms of top heading (TH), benching/ invert and temporary invert as shown in support class drawings are inherent components of support classes and shall be executed accordingly. Adjustment to support measures and round lengths is permissible based on the actual geological conditions and the monitoring results.

Page 29 of 30

CHAPTER 10 LIST OF ANNEXURES

CHAPTER 10: LIST OF ANNEXURES

- ANNEXURE 1 RS2 FEM OUTPUT
- ANNEXURE 2 PILE BEARING CAPACITY CHECK
- ANNEXURE 3 TOE STABILITY CHECK
- ANNEXURE 4 ANALYTICAL ANALYSIS DUDDECK/ERDMANN RESULTS
- ANNEXURE 5 PIPE ROOF CHECK
- ANNEXURE 6 FACE STABILITY
- ANNEXURE 7 DRAWINGS

Draft Detailed Project Report

ANNEXURES

ANNEXURE - 1 RS2 FEM OUTPUT

Plot 1: Axial Force for Secant Pile Wall – Stage-3

Plot 2: Bending Moment for Secant Pile Wall – Stage-3

Plot 3: Shear Force for Secant Pile Wall – Stage-3

Plot 4: Axial Force for Secant Pile Wall – Stage-4

Plot 5: Bending Moment for Secant Pile Wall – Stage-4

Plot 6: Shear Force for Secant Pile Wall – Stage-4

Plot 7: Axial Force for Secant Pile Wall – Stage-5

Plot 8: Bending Moment for Secant Pile Wall – Stage-5

Plot 9: Shear Force for Secant Pile Wall – Stage-5

Plot 10: Axial Force for Secant Pile Wall – Stage-6

Plot 11: Bending Moment for Secant Pile Wall – Stage-6

Plot 12: Shear Force for Secant Pile Wall – Stage-6

Plot 13: Axial Force for Secant Pile Wall – Stage-7

Plot 14: Bending Moment for Secant Pile Wall – Stage-7

Plot 15: Shear Force for Secant Pile Wall – Stage-7

Plot 16: Axial Force for Secant Pile Wall – Stage-8

Plot 17: Bending Moment for Secant Pile Wall – Stage-8

Plot 18: Shear Force for Secant Pile Wall – Stage-8

	.14 [kN] Axial Force
86	5.769 [kN] Axial Force
	0 2
	9
	ана на селото на село
	d de la companya de l
	م الم
	이 1997년 1997년 1997년 1997년 1997

Plot 19: Axial Force for Secant Pile Wall – Stage-9

Plot 20: Bending Moment for Secant Pile Wall - Stage-9

Plot 21: Shear Force for Secant Pile Wall – Stage-9

Plot 22: Axial Force for Secant Pile Wall – Stage-10

Plot 23: Bending Moment for Secant Pile Wall – Stage-10

Plot 24: Shear Force for Secant Pile Wall – Stage-10

87.746 [kN] Axial Force
1028.386 [kN] Axial Force
A
9

Plot 25: Axial Force for Secant Pile Wall – Stage-11

Plot 27: Shear Force for Secant Pile Wall – Stage-11

Plot 28: Axial Force for Secant Pile Wall – Stage-12

	20.142 [kNm] Moment
	0
-2	24.233 [kNm] Moment
	ă
	ġ
	Μ
	o de la companya de la
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	d d
	2
	S

Plot 29: Bending Moment for Secant Pile Wall – Stage-12

Plot 30: Shear Force for Secant Pile Wall – Stage-12

Plot 31: Axial Force for Secant Pile Wall – Stage-13

Plot 32: Bending Moment for Secant Pile Wall – Stage-13

Plot 33: Shear Force for Secant Pile Wall – Stage-13

Plot 34: Axial Force for Secant Pile Wall – Stage-14

Plot 35: Bending Moment for Secant Pile Wall – Stage-14

Plot 36: Shear Force for Secant Pile Wall – Stage-14

Plot 37: Axial Force for Secant Pile Wall – Stage-15

Plot 38: Bending Moment for Secant Pile Wall – Stage-15

Plot 39: Shear Force for Secant Pile Wall – Stage-15

Plot 40: Axial Force for Secant Pile Wall – Stage-16

0.521 [kNm] Moment		
7.8 [kNm] Moment		0 0 0
		000

Plot 41: Bending Moment for Secant Pile Wall – Stage-16

Plot 42: Shear Force for Secant Pile Wall – Stage-16

2.995 [kN] Axial Force		
86.424 [kN] Axial Force		0 0 0 0

Plot 43: Axial Force for Secant Pile Wall – Stage-17

Plot 44: Bending Moment for Secant Pile Wall – Stage-17

Plot 45: Shear Force for Secant Pile Wall – Stage-17

Plot 46: Axial Force for Secant Pile Wall – Stage-18

Plot 47: Bending Moment for Secant Pile Wall – Stage-18

Plot 48: Shear Force for Secant Pile Wall – Stage-18

Plot 49: Axial Force for Secant Pile Wall – Stage-19

Plot 51: Shear Force for Secant Pile Wall – Stage-19

Plot 52: Axial Force for Secant Pile Wall – Stage-20

Plot 53: Bending Moment for Secant Pile Wall – Stage-20

Plot 54: Shear Force for Secant Pile Wall – Stage-20

92.924 [kN] Axial Force	
1411.384 [kN] Axial Force	

Plot 55: Axial Force for Secant Pile Wall – Stage-21

Plot 56: Bending Moment for Secant Pile Wall – Stage-21

Plot 57: Shear Force for Secant Pile Wall – Stage-21

Plot 58: Axial Force for Secant Pile Wall – Stage-22

Plot 59: Bending Moment for Secant Pile Wall – Stage-22

Plot 60: Shear Force for Secant Pile Wall – Stage-22

Plot 61: Displacement for Secant Pile Wall – Stage-22

Plot 62: Anchor bolt Axial force – Stage-22

Plot 63: SRF – Stage-22

RS2 Analysis Information Project1

Project Summary

File Name:240902-CNC-32m Deep-R6-F_1Last saved with RS2 version:10.012Project Title:Project1

General Settings

Number of Stages:	28		
Analysis Type:	Plane Strain		
Solver Type:	Gaussian Elimination		
Units:	Metric, stress as kPa		
Permeability Units:	meters/second		
Time Units:	seconds		

Analysis Options

Maximum Number of Iterations:	1500
Tolerance:	0.003
Number of Load Steps:	Automatic
Convergence Type:	Absolute Force & Energy
Tensile Failure:	Reduces Shear Strength

Strength Reduction Settings

natic
natic

Groundwater Analysis

Method:	Steady State
Pore Fluid Unit Weight:	9.81 kN/m3
Maximum Number of Iterations:	500
Tolerance:	0.001
Use Fluid Potential:	Yes

Probability: None

Field Stress

Field stress:	Gravity
Using actual ground surface	
Effective stress ratio (horizontal/vertical in-plane):	0.5
Effective stress ratio (horizontal/vertical out-of-plane):	0.5
Locked-in horizontal stress (in-plane):	0
Locked-in horizontal stress (out-of-plane):	0

Mesh

Mesh type: Uniform

Element type: 6 Noded triangles

Stage Name	# of Elements	# of Nodes
In-situ	2327	4835
Surcharge	2327	4835
E-1	2305	4790
Anchor I	2305	4790
E-2	2283	4744
E-3	2261	4698
A-2	2261	4698
E-4	2217	4606
А	2217	4606
E-5	2195	4560
Anchor II	2195	4560
E-6	2173	4514
A-4	2173	4514
E-7	2151	4468
Anchor II	2151	4468
E-8	2129	4422
Anchor IV	2129	4422
E-9	2107	4376
А	2107	4376
E-10	2085	4330
Anchor IV	2085	4330
E-11	2063	4284
E-12	2043	4244
S-1	2043	4244
E-13	2015	4188
S-2	2015	4188
E-14	1995	4148
S-3	1995	4148

Mesh Quality

All elements are of good quality

Poor quality elements defined as:

Side length ratio (maximum / minimum) > 30.00 Minimum interior angle < 2.0 degrees Maximum interior angle > 175.0 degrees

Reset Displacements

Displacements reset after: In-situ Displacements reset after: Surcharge

Material Properties

L-1: Fill

Material Color	
Initial Element Loading	Field Stress and Body Force
Unit Weight	16 kN/m3
Initial Water Condition	Dry
Elastic Type	Isotropic
Poisson's Ratio	0.3
Young's Modulus	5000 kPa
Use Residual Young's Modulus	No
Failure Criterion	Mohr-Coulomb
Material Type	Plastic
Peak Tensile Strength	0 kPa
Peak Friction Angle	25 degrees
Peak Cohesion	1 kPa
Residual Tensile Strength	0 kPa
Residual Friction Angle	25 degrees
Residual Cohesion	1 kPa
Dilation Angle	0 degrees
Apply SSR (Shear Strength Reduction)	Yes
Use Unsaturated Parameters	No
Material Behaviour	Drained
Porosity Value	0.5
Ks	5e-07 m/s
K2 / K1	1
K1 Angle	0 degrees
Soil Type	General
Field Stress	Gravity
Using actual ground surface	Yes
Effective stress ratio (horizontal/vertical in-plane)	0.58
Effective stress ratio (horizontal/vertical out-of-plane)	0.58
Locked-in horizontal stress (in-plane)	0
Locked-in horizontal stress (out-of-plane)	0

L-2: Silty Sand / Clayey Sand

Material Color	
Initial Element Loading	Field Stress and Body Force
Unit Weight	18 kN/m3
Initial Water Condition	Dry
Elastic Type	Isotropic
Poisson's Ratio	0.3
Young's Modulus	25000 kPa
Use Residual Young's Modulus	No
Failure Criterion	Mohr-Coulomb
Material Type	Plastic
Peak Tensile Strength	0 kPa
Peak Friction Angle	25 degrees
Peak Cohesion	2 kPa
Residual Tensile Strength	0 kPa
Residual Friction Angle	25 degrees
Residual Cohesion	2 kPa
Dilation Angle	0 degrees
Apply SSR (Shear Strength Reduction)	Yes
Use Unsaturated Parameters	No
Material Behaviour	Drained
Porosity Value	0.5
Ks	1e-07 m/s
K2 / K1	1
K1 Angle	0 degrees
Soil Type	General
Field Stress	Gravity
Using actual ground surface	Yes
Effective stress ratio (horizontal/vertical in-plane)	0.58
Effective stress ratio (horizontal/vertical out-of-plane)	0.58
Locked-in horizontal stress (in-plane)	0
Locked-in horizontal stress (out-of-plane)	0

L-3: CW/HW

Material Color	
Initial Element Loading	Field Stress and Body Force
Unit Weight	22 kN/m3
Initial Water Condition	Dry
Elastic Type	Isotropic
Poisson's Ratio	0.3
Young's Modulus	305000 kPa
Use Residual Young's Modulus	No
Failure Criterion	Mohr-Coulomb
Material Type	Plastic
Peak Tensile Strength	0 kPa
Peak Friction Angle	39 degrees
Peak Cohesion	120 kPa
Residual Tensile Strength	0 kPa
Residual Friction Angle	39 degrees
Residual Cohesion	120 kPa
Dilation Angle	0 degrees
Apply SSR (Shear Strength Reduction)	Yes
Use Unsaturated Parameters	No
Material Behaviour	Drained
Porosity Value	0.5
Ks	1e-06 m/s
K2 / K1	1
K1 Angle	0 degrees
Soil Type	General
Field Stress	Gravity
Using actual ground surface	Yes
Effective stress ratio (horizontal/vertical in-plane)	0.43
Effective stress ratio (horizontal/vertical out-of-plane)	0.43
Locked-in horizontal stress (in-plane)	0
Locked-in horizontal stress (out-of-plane)	0

L-4: MW

Material Color	
Initial Element Loading	Field Stress and Body Force
Unit Weight	25 kN/m3
Initial Water Condition	Dry
Elastic Type	Isotropic
Poisson's Ratio	0.25
Young's Modulus	1.3e+06 kPa
Use Residual Young's Modulus	No
Failure Criterion	Mohr-Coulomb
Material Type	Plastic
Peak Tensile Strength	0 kPa
Peak Friction Angle	52 degrees
Peak Cohesion	250 kPa
Residual Tensile Strength	0 kPa
Residual Friction Angle	52 degrees
Residual Cohesion	250 kPa
Dilation Angle	0 degrees
Apply SSR (Shear Strength Reduction)	Yes
Use Unsaturated Parameters	No
Material Behaviour	Drained
Porosity Value	0.5
Ks	1e-07 m/s
K2 / K1	1
K1 Angle	0 degrees
Soil Type	General
Field Stress	Gravity
Using actual ground surface	Yes
Effective stress ratio (horizontal/vertical in-plane)	0.33
Effective stress ratio (horizontal/vertical out-of-plane)	0.33
Locked-in horizontal stress (in-plane)	0
Locked-in horizontal stress (out-of-plane)	0

L-5: SW/Fresh

Material Color	
Initial Element Loading	Field Stress and Body Force
Unit Weight	26 kN/m3
Initial Water Condition	Dry
Elastic Type	Isotropic
Poisson's Ratio	0.2
Young's Modulus	1.445e+07 kPa
Use Residual Young's Modulus	No
Failure Criterion	Mohr-Coulomb
Material Type	Plastic
Peak Tensile Strength	0 kPa
Peak Friction Angle	65 degrees
Peak Cohesion	1300 kPa
Residual Tensile Strength	0 kPa
Residual Friction Angle	65 degrees
Residual Cohesion	1300 kPa
Dilation Angle	0 degrees
Apply SSR (Shear Strength Reduction)	Yes
Use Unsaturated Parameters	No
Material Behaviour	Drained
Porosity Value	0.5
Ks	1e-08 m/s
K2 / K1	1
K1 Angle	0 degrees
Soil Type	General
Field Stress	Gravity
Using actual ground surface	Yes
Effective stress ratio (horizontal/vertical in-plane)	0.25
Effective stress ratio (horizontal/vertical out-of-plane)	0.25
Locked-in horizontal stress (in-plane)	0
Locked-in horizontal stress (out-of-plane)	0

Page 7 of 15

Joint 1

Joint Properties

Joint Color	
Slip Critirion	Material Dependent
Define Stiffness	Define Parameter
Normal Stiffness	100000 kPa/m
Shear Stiffness	10000 kPa/m
Initial Deformation	Yes
Pressure from Groundwater Analysis	Yes
Apply Pressure to Linear Side Only	No
Apply Additional Pressure inside Joint	Not Included
Interface Coefficient	0.7
Apply Stage Factors	No

٦

Liner Properties

Liner: SPW-1m

Г

.

Color	
Liner Type	Standard Beam
Formulation	Timoshenko
Area	0.4908 m2
Moment of Inertia	0.03067 m4

Elastic Properties

Young's modulus	2.958e+07 kPa
Poisson's ratio	0.2
Liner Unit Weight	25 kN/m3

Liner: SC-100mm

Color	
Liner Type	Standard Beam
Formulation	Timoshenko
Thickness	0.1 m

Elastic Properties

Young's modulus 2.5e+07 kPa Poisson's ratio 0.2

Structural Interface Properties

Structural Interface:	Structural 1	
Joint (positive side):	Joint 1	
Liner:	SPW-1m	
Joint (negative side):	Joint 1	

Bolt Properties

Ground Anchor-1

Bolt Color	
Bolt Type	Tieback
Bolt Diameter	33.98 mm
Bolt Modulus,E	2e+08 kPa
Bolt Model	No
Tensile Capacity	1303.5 kN
Residual Tensile Capacity	130 kN
Out-of-Plane Spacing	1.6 m
Bond Shear Stiffness	2500 kN/m/m
Bond Strength	235.6 kN/m
Joint Shear	Yes
Borehole Diameter	150 mm
Pre-Tensioning Force	650 kN
Constant Pre-tensioning Force in Install Stage	Yes
Face Plates	Attached
Bond Length	5 m

Ground Anchor-II

Bolt Color	
Bolt Type	Tieback
Bolt Diameter	33.98 mm
Bolt Modulus,E	2e+08 kPa
Bolt Model	No
Tensile Capacity	1303.5 kN
Residual Tensile Capacity	130 kN
Out-of-Plane Spacing	1.6 m
Bond Shear Stiffness	2500 kN/m/m
Bond Strength	235.6 kN/m
Joint Shear	Yes
Borehole Diameter	150 mm
Pre-Tensioning Force	488 kN
Constant Pre-tensioning Force in Install Stage	Yes
Face Plates	Attached
Bond Length	5 m

SN-32

Bolt Color	
Bolt Type	Fully Bonded
Bolt Diameter	32 mm
Bolt Modulus,E	2e+08 kPa
Tensile Capacity	350 kN
Residual Tensile Capacity	35 kN
Out-of-Plane Spacing	3.2 m
Pre-Tensioning Force	0 kN
Constant Pre-tensioning Force in Install Stage	Yes
Joint Shear	Yes

SN-25

Bolt Color	
Bolt Type	Fully Bonded
Bolt Diameter	25 mm
Bolt Modulus,E	2e+08 kPa
Tensile Capacity	213 kN
Residual Tensile Capacity	21 kN
Out-of-Plane Spacing	2 m
Pre-Tensioning Force	0 kN
Constant Pre-tensioning Force in Install Stage	Yes
Joint Shear	Yes

Ground Anchor-III

Bolt Color	
Bolt Type	Tieback
Bolt Diameter	37.23 mm
Bolt Modulus,E	2e+08 kPa
Bolt Model	No
Tensile Capacity	1564.2 kN
Residual Tensile Capacity	156 kN
Out-of-Plane Spacing	3.2 m
Bond Shear Stiffness	2500 kN/m/m
Bond Strength	235.6 kN/m
Joint Shear	Yes
Borehole Diameter	150 mm
Pre-Tensioning Force	520 kN
Constant Pre-tensioning Force in Install Stage	Yes
Face Plates	Attached
Bond Length	5 m

Ground Anchor-IV

Bolt Color	
Bolt Type	Tieback
Bolt Diameter	33.98 mm
Bolt Modulus,E	2e+08 kPa
Bolt Model	No
Tensile Capacity	1303.5 kN
Residual Tensile Capacity	130 kN
Out-of-Plane Spacing	3.2 m
Bond Shear Stiffness	2500 kN/m/m
Bond Strength	235.6 kN/m
Joint Shear	Yes
Borehole Diameter	150 mm
Pre-Tensioning Force	520 kN
Constant Pre-tensioning Force in Install Stage	Yes
Face Plates	Attached
Bond Length	5 m

List of All Coordinates

External boundary

X	Υ	
-80	0	
-80	-5	
-80	-7.5	
-80	-12	
-80	-22	
-80	-30	
-80	-100	
30	-100	
30	-32	
30	-30	
30	-26	
30	-22	
30	-20	
30	-18	
30	-16	
30	-14	
30	-12	
30	-10	
30	-8	
30	-7.5	
30	-6	
30	-4	
30	-2	
30	0	
0	0	
-1	0	

Stage boundary

Χ	Υ	
1	-22	
1	-26	
1	-30	
1	-32	
30	-32	

Stage boundary

X	Y
0	-22
1	-22

Stage boundary

Χ	Υ
0	-2
30	-2

Stage boundary

Χ	Υ
0	-4
30	-4

Stage boundary

Χ	Υ
0	-6
30	-6

Stage boundary

Χ	Υ
0	-8
30	-8

Stage boundary

X	Υ
0	-10
30	-10

Stage boundary

X	Υ
0	-14
30	-14

Stage boundary

Χ	Υ
0	-16
30	-16

Stage boundary

Χ	Υ
0	-18
30	-18

Stage boundary

Χ	Υ
0	-20
30	-20

Stage boundary

Χ	Υ
1	-26
30	-26

Material boundary
Χ	Υ
-80	-7.5
0	-7.5
30	-7.5

Material boundary

X	Υ
-80	-12
0	-12

Material boundary

Χ	Υ
-80	-22
0	-22

Material boundary

X	Υ
-80	-30
1	-30
30	-30

Material boundary

Χ	Υ
1	-22
30	-22

Material boundary

Χ	Υ
0	-12
30	-12

Structural interface

Χ	Υ	
0	0	
0	-2	
0	-4	
0	-6	
0	-7.5	
0	-8	
0	-10	
0	-12	
0	-14	
0	-16	
0	-18	
0	-20	
0	-22	
0	-23	

Bolt

X	Y
0	-1.5
-26.8116	-23.9976

Bolt

X	Y
0	-12
-21.6506	-24.5

Bolt

X	Υ
0	-21.5
-7.79423	-26

Bolt

X	Y
0	-8.5
-23.8551	-24.9921

Bolt

X	Y
0	-15.5081
-15.5885	-24.5081

Bolt

X	Y
0	-18.5081
-8.66025	-23.5081

Bolt

X	Y
1	-23.0657
-2.4641	-25.0657

Bolt

X	Y
1	-25.0657
-2.4641	-27.0657

Bolt

X	Y
1	-27.0657
-2.4641	-29.0657

Bolt

-	
X	Y
1	-29.0657
-2.4641	-31.0657

Bolt

X	Y
1	-31.0657
-2.4641	-33.0657

FEM ANALYSIS OUTPUT 12 M DEEP EXCAVATION

Plot 4: Axial Force for Secant Pile Wall – Stage-4

Plot 5: Bending Moment for Secant Pile Wall – Stage-4

Plot 6: Shear Force for Secant Pile Wall – Stage-4

Plot 7: Axial Force for Secant Pile Wall – Stage-5

Plot 9: Shear Force for Secant Pile Wall – Stage-5

Plot 10: Axial Force for Secant Pile Wall – Stage-6

Plot 11: Bending Moment for Secant Pile Wall – Stage-6

Plot 13: Axial Force for Secant Pile Wall – Stage-7

Plot 15: Shear Force for Secant Pile Wall – Stage-7

Plot 16: Axial Force for Secant Pile Wall – Stage-8

543.296 (kNm) Moment		
		þ
-218.128 [kNm] Moment		м A
μ,		허
		어 여

Plot 17: Bending Moment for Secant Pile Wall – Stage-8

Plot 18: Shear Force for Secant Pile Wall – Stage-8

28.968 [tN] Axial Force		
484.607 [kN] Axial Force		00000 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Plot 19: Axial Force for Secant Pile Wall – Stage-9

Plot 21: Shear Force for Secant Pile Wall – Stage-9

d d
9 9 9

Plot 23: Bending Moment for Secant Pile Wall – Stage-10

-122.485 [kN] Shear Force	
209.053 [kN] Shear Force	al
	P
	b
	M
	м
	1
	P
	b

Plot 24: Shear Force for Secant Pile Wall – Stage-10

Plot 25: Displacement for Secant Pile Wall – Stage-10

Plot 26: Anchor Bolt Force – Stage-10

Plot 27: SRF – Stage-10

RS2 Analysis Information Project1

Project Summary

File Name:240906-CNC-12m Deep-R5_3_3-FinalLast saved with RS2 version:10.011Project Title:Project1

General Settings

Number of Stages:	10
Analysis Type:	Plane Strain
Solver Type:	Gaussian Elimination
Units:	Metric, stress as kPa
Permeability Units:	meters/second
Time Units:	seconds

Analysis Options

Maximum Number of Iterations:	1500
Tolerance:	0.001
Number of Load Steps:	Automatic
Convergence Type:	Absolute Force & Energy
Tensile Failure:	Reduces Shear Strength

Strength Reduction Settings

Inital Estimate of SRF:	1
Step Size:	Automatic
Tolerance (SRF):	0.01
Limit SSR Search Area:	No
Accelerate SSR Analysis:	Yes
Reduce SSR Iterations after failure:	Yes
Apply SSR to Mohr-Coulomb Tensile Strength:	Yes
Convergence Parameters:	Automatic

Groundwater Analysis

Method:	Steady State
Pore Fluid Unit Weight:	9.81 kN/m3
Maximum Number of Iterations:	500
Tolerance:	0.001
Use Fluid Potential:	Yes

Probability: None

Field Stress

Field stress:	Gravity
Using actual ground surface	
Effective stress ratio (horizontal/vertical in-plane):	0.58
Effective stress ratio (horizontal/vertical out-of-plane):	0.58
Locked-in horizontal stress (in-plane):	0
Locked-in horizontal stress (out-of-plane):	0

Mesh

Mesh type: Graded

Element type: 6 Noded triangles

Stage Name	# of Elements	# of Nodes
In-situ	2246	4680
Surchage	2246	4680
E-1	2214	4613
A-1	2214	4613
E-2	2184	4551
E-3	2109	4398
E-4	2029	4234
E-5	1982	4131
A-2	1982	4131
E-6	1912	3987

Mesh Quality

All elements are of good quality

Poor quality elements defined as:

Side length ratio (maximum / minimum) > 30.00 Minimum interior angle < 2.0 degrees Maximum interior angle > 175.0 degrees

Reset Displacements

Displacements reset after: In-situ Displacements reset after: Surchage

Material Properties

L-1: Fill

Material Color	
Initial Element Loading	Field Stress and Body Force
Unit Weight	16 kN/m3
Initial Water Condition	Dry
Elastic Type	Isotropic
Poisson's Ratio	0.3
Young's Modulus	5000 kPa
Use Residual Young's Modulus	No
Failure Criterion	Mohr-Coulomb
Material Type	Plastic
Peak Tensile Strength	0 kPa
Peak Friction Angle	25 degrees
Peak Cohesion	1 kPa
Residual Tensile Strength	0 kPa
Residual Friction Angle	25 degrees
Residual Cohesion	1 kPa
Dilation Angle	0 degrees
Apply SSR (Shear Strength Reduction)	Yes
Use Unsaturated Parameters	No
Material Behaviour	Drained
Porosity Value	0.5
Ks	5e-07 m/s
K2 / K1	1
K1 Angle	0 degrees
Soil Type	General
Field Stress	Gravity
Using actual ground surface	Yes
Effective stress ratio (horizontal/vertical in-plane)	0.58
Effective stress ratio (horizontal/vertical out-of-plane)	0.58
Locked-in horizontal stress (in-plane)	0
Locked-in horizontal stress (out-of-plane)	0

L-2: Silty Sand / Clayey Sand

Material Color	
Initial Element Loading	Field Stress and Body Force
Unit Weight	18 kN/m3
Initial Water Condition	Dry
Elastic Type	Isotropic
Poisson's Ratio	0.3
Young's Modulus	25000 kPa
Use Residual Young's Modulus	No
Failure Criterion	Mohr-Coulomb
Material Type	Plastic
Peak Tensile Strength	0 kPa
Peak Friction Angle	25 degrees
Peak Cohesion	2 kPa
Residual Tensile Strength	0 kPa
Residual Friction Angle	25 degrees
Residual Cohesion	2 kPa
Dilation Angle	0 degrees
Apply SSR (Shear Strength Reduction)	Yes
Use Unsaturated Parameters	No
Material Behaviour	Drained
Porosity Value	0.5
Ks	1e-07 m/s
K2 / K1	1
K1 Angle	0 degrees
Soil Type	General
Field Stress	Gravity
Using actual ground surface	Yes
Effective stress ratio (horizontal/vertical in-plane)	0.58
Effective stress ratio (horizontal/vertical out-of-plane)	0.58
Locked-in horizontal stress (in-plane)	0
Locked-in horizontal stress (out-of-plane)	0

L-3: CW/HW

Material Color	
Initial Element Loading	Field Stress and Body Force
Unit Weight	22 kN/m3
Initial Water Condition	Dry
Elastic Type	Isotropic
Poisson's Ratio	0.3
Young's Modulus	305000 kPa
Use Residual Young's Modulus	No
Failure Criterion	Mohr-Coulomb
Material Type	Plastic
Peak Tensile Strength	0 kPa
Peak Friction Angle	39 degrees
Peak Cohesion	120 kPa
Residual Tensile Strength	0 kPa
Residual Friction Angle	39 degrees
Residual Cohesion	120 kPa
Dilation Angle	0 degrees
Apply SSR (Shear Strength Reduction)	Yes
Use Unsaturated Parameters	No
Material Behaviour	Drained
Porosity Value	0.5
Ks	1e-06 m/s
K2 / K1	1
K1 Angle	0 degrees
Soil Type	General
Field Stress	Gravity
Using actual ground surface	Yes
Effective stress ratio (horizontal/vertical in-plane)	0.43
Effective stress ratio (horizontal/vertical out-of-plane)	0.43
Locked-in horizontal stress (in-plane)	0
Locked-in horizontal stress (out-of-plane)	0

L-4: MW

Material Color	
Initial Element Loading	Field Stress and Body Force
Unit Weight	25 kN/m3
Initial Water Condition	Dry
Elastic Type	Isotropic
Poisson's Ratio	0.25
Young's Modulus	1.3e+06 kPa
Use Residual Young's Modulus	No
Failure Criterion	Mohr-Coulomb
Material Type	Plastic
Peak Tensile Strength	0 kPa
Peak Friction Angle	52 degrees
Peak Cohesion	250 kPa
Residual Tensile Strength	0 kPa
Residual Friction Angle	52 degrees
Residual Cohesion	250 kPa
Dilation Angle	0 degrees
Apply SSR (Shear Strength Reduction)	Yes
Use Unsaturated Parameters	No
Material Behaviour	Drained
Porosity Value	0.5
Ks	1e-07 m/s
K2 / K1	1
K1 Angle	0 degrees
Soil Type	General
Field Stress	Gravity
Using actual ground surface	Yes
Effective stress ratio (horizontal/vertical in-plane)	0.33
Effective stress ratio (horizontal/vertical out-of-plane)	0.33
Locked-in horizontal stress (in-plane)	0
Locked-in horizontal stress (out-of-plane)	0

L-5: SW/Fresh

Material Color	
Initial Element Loading	Field Stress and Body Force
Unit Weight	26 kN/m3
Initial Water Condition	Dry
Elastic Type	Isotropic
Poisson's Ratio	0.2
Young's Modulus	1.445e+07 kPa
Use Residual Young's Modulus	No
Failure Criterion	Mohr-Coulomb
Material Type	Plastic
Peak Tensile Strength	0 kPa
Peak Friction Angle	65 degrees
Peak Cohesion	1300 kPa
Residual Tensile Strength	0 kPa
Residual Friction Angle	65 degrees
Residual Cohesion	1300 kPa
Dilation Angle	0 degrees
Apply SSR (Shear Strength Reduction)	Yes
Use Unsaturated Parameters	No
Material Behaviour	Drained
Porosity Value	0.5
Ks	1e-08 m/s
K2 / K1	1
K1 Angle	0 degrees
Soil Type	General
Field Stress	Gravity
Using actual ground surface	Yes
Effective stress ratio (horizontal/vertical in-plane)	0.25
Effective stress ratio (horizontal/vertical out-of-plane)	0.25
Locked-in horizontal stress (in-plane)	0
Locked-in horizontal stress (out-of-plane)	0

Joint Properties

Joint 1

Joint Color	
Slip Critirion	Material Dependent
Define Stiffness	Define Parameter
Normal Stiffness	100000 kPa/m
Shear Stiffness	10000 kPa/m
Initial Deformation	Yes
Pressure from Groundwater Analysis	Yes
Apply Pressure to Linear Side Only	No
Apply Additional Pressure inside Joint	Not Included
Interface Coefficient	0.7
Apply Stage Factors	No

٦

Liner Properties

Liner: SPW-0.8m

Г

Elastic Properties

Young's modulus	2.958e+07 kPa
Poisson's ratio	0.2
Liner Unit Weight	25 kN/m3

Structural Interface Properties

Structural Interface:	Structural 1
Joint (positive side):	Joint 1
Liner:	SPW-0.8m
Joint (negative side):	Joint 1

Bolt Properties

Ground Anchor-1

Bolt Color	
Bolt Type	Tieback
Bolt Diameter	33.98 mm
Bolt Modulus,E	2e+08 kPa
Bolt Model	No
Tensile Capacity	800 kN
Residual Tensile Capacity	130 kN
Out-of-Plane Spacing	2.6 m
Bond Shear Stiffness	2500 kN/m/m
Bond Strength	235.6 kN/m
Joint Shear	Yes
Borehole Diameter	150 mm
Pre-Tensioning Force	450 kN
Constant Pre-tensioning Force in Install Stage	Yes
Face Plates	Attached
Bond Length	5 m

Ground Anchor-II

Bolt Color	
Bolt Type	Tieback
Bolt Diameter	33.98 mm
Bolt Modulus,E	2e+08 kPa
Bolt Model	No
Tensile Capacity	800 kN
Residual Tensile Capacity	130 kN
Out-of-Plane Spacing	2.6 m
Bond Shear Stiffness	2500 kN/m/m
Bond Strength	235.6 kN/m
Joint Shear	Yes
Borehole Diameter	150 mm
Pre-Tensioning Force	450 kN
Constant Pre-tensioning Force in Install Stage	Yes
Face Plates	Attached
Bond Length	5 m

List of All Coordinates

External boundary

Υ
0
-5
-7.5
-12
-22
-30
-50
-50
-30
-22
-12
-10
-8
-7.5
-6
-4
-2
0
0
0

Stage boundary

Χ	Υ
0	-2
25	-2

Stage boundary

Χ	Υ
0	-4
25	-4

Stage boundary

Χ	Υ
0	-6
25	-6

Stage boundary

Χ	Υ
0	-8
25	-8

Stage boundary

Χ	Υ
0	-10
25	-10

Material boundary

Χ	Υ
25	-7.5
0	-7.5
-50	-7.5

Material boundary

Χ	Υ
25	-12
0	-12
-50	-12

Material boundary

Χ	Υ
25	-22
-50	-22

Material boundary

Χ	Υ
-50	-30
25	-30

Structural interface

Χ	Υ	
0	0	
0	-2	
0	-4	
0	-6	
0	-7.5	
0	-8	
0	-10	
0	-12	
0	-15	

Bolt

X	Y
0	-1.5
-18.0063	-17.368

Bolt

X	Y
0	-8.5
-16.3654	-19.9966

ANNEXURE - 2 PILE BEARING CAPACITY CHECK

Pile Bearing Capacity Check for 1.0m Dia Pile -32m Excavation Depth

Structure		=	Shafts / C&C		
Chainage		=	-	m	
Bore holes		=	BH-1		
Pile Diameter, D		=	1	m	
Spacing of Pile, S		=	1.6	m	
Ultimate Capacity of Pile, Qu		=	$Re = K_{sp} * q_c * d_f * A_b$		
Core recovery, CR %		=	50		
Rock Quality Designation, RQD %		=	50		
Emperical Coefficient, Ksp		=	0.56		
Average Compression Strength, qu MPa		=	35		
Cross Sectional area of base of pile, A _b m2	=		0.785		
Depth factor, d _f	=		1.2		
Ultimate End bearing capacity of Pile, Re	=		18378		
Factor of safety for End bearing capacity	=		3		
Allowable end bearing capacity of Pile, kN	=		3927		
Allowable Vertical pile capacity , Qa kN	=		3927		
Axial Load on the pile tip, Q kN/m	=		1510	[FEM Result]	
Axial load on the pile tip, Q kN [FEM Analysis]	=		2416	SAFE	

Pile Bearing Capacity Check for 0.8m Dia Pile -12m Excavation Depth

Structure		=	Ramp Portion	
Chainage		=	-	m
Bore holes		=	BH-1	
Pile Diameter, D		=	0.8	m
Spacing of Pile, S		=	1.3	m
Ultimate Capacity of Pile, Qu		=	$Re = K_{sp} * q_c * d_f * A_b$	
Core recovery, CR %		=	30	
Rock Quality Designation, RQD %		=	30	
Emperical Coefficient, Ksp		=	0.30	
Average Compression Strength, qu MPa		=	25	
Cross Sectional area of base of pile, A _b m2	=		0.503	
Depth factor, d _f	=		1.2	
Ultimate End bearing capacity of Pile, Re	=		4524	
Factor of safety for End bearing capacity	=		3	
Allowable end bearing capacity of Pile, kN	=		1508	
Allowable Vertical pile capacity , Qa kN	=		1508	
Axial Load on the pile tip, Q kN/m	=		460	[FEM Result]
Axial load on the pile tip, Q kN [FEM Analysis]	=		598	SAFE

ANNEXURE – 3 TOE STABILITY CHECK

97 nc7 0¹¹⁷ 02

ACTIVE S	DE (Earth	Pressure,	Water Press	ure & due	to Surcha	rge)				P _{a1} (Earth Pi	ressure) kPa	$P_{a} = P_{a1} + P_{a2} + P_{w}(kPa)$						
Depth	Depth (MSL)		Thickness	γ _b	Cohesion	(deg)	Pressure	Overburden	P (kPa)	at Start of at Er	at End of	P _{a2}	at Start of	at End of	Active	Centroid	Lever	M (kNm/m)
From	to	to Soli Type	(m)	n) (kN/m ³)	(kPa)	Φ (deg)	(k0)	(kPa)	ι _w (κι α)	layer	r layer	(kPa)	layer	layer	Active Force (kN/m) Centroid (m) Le arm 424.42 2.500 0 649.87 2.080 0	arm (m)	W _a (KI MII/III)	
0	-7.5	L-1	7.5	16	1	25	0.58	120.00	24.53		53.85	34.80		113.18	424.42	2.500	0	0
-7.5	-12	L-2	4.5	18	2	25	0.58	201.00	68.67	52.33	73.71	34.80	111.65	177.18	649.87	2.080	0.00	0.00
-12	-21.5	L-3	9.5	22	120	39	0.43	410.00	161.87	0.00	0.00	25.80	94.47	187.67	1340.14	4.227	0.00	0.00
-21.5	-22	L-3	0.5	22	120	39	0.43	421.00	166.77	0.00	0.00	25.80	187.67	192.57	95.06	0.249	0.25	23.87
-22	-23	L-4	1	25	250	52	0.33	435.00	176.58	0.00	0.00	19.80	186.57	196.38	191.48	0.496	1.00	192.29

Passive side (Earth Pressure & Water Pressure)										P _{p1} (Earth Pi	ressure) kPa	$P_p = P_{p1} +$	- P _w (kPa)				
Depth	(MSL)	Soil Turo	Thickness	γ_{b}	Cohesion	• (1 -)	Pressure	Overburden	P (kPa)	at Start of	at End of	at Start of	at End of	Passive	Centroid	Lever	M _p
From	to	Soil Type	(m)	(kN/m ³)	(kPa)	Φ (deg)	(k _p)	(kPa)	r _w (kra)	layer	layer	layer	layer	Force (kN/m)	(m)	arm (m)	(kNm/m)
-22	-23	L-4	1	25	250	52	3.03	25.00	0.00	870.39	946.15	870.39	946.15	908.27	0.493	1.01	914.5802

Driving Moment 216.1594 kNm/m Resisting Moment 914.5802 kNm/m Factor of Safety 4.23

SAFE

Assumptions

1. If active earth pressure is observed to be negative at any depth, it has been considered as zero to be on conservative side.

2. FOS of 1.3 is assumed to be safe.

3. GWT on passive side is considered 5m below Excavation level.

4. Rankine's Earth pressure coefficients are considered.

5. Here for the conservative purpose, the At rest Earth pressure coefficient has been considered against Active earth pressure coefficient

6. Moments are taken as per lowest level struts and resistance offered by top struts is ignored.

0 MSL

-7.5 MSL

-12 MSL

-22 MSL

-30 MSL

ACTIVE SI	ACTIVE SIDE (Earth Pressure, Water Pressure & due to Surcharge)											$P_a = P_{a1} + P_{a2} + P_w (kPa)$						
Depth	(MSL)	Soil Type	Thickness	γь	Cohesion	ው (deg)	Pressure	Overburden	P (kPa)	at Start of	at End of	P _{a2} (Surchargo)	at Start of	at End of	Active	Centroid	Lever arm	M (kNm/m)
From	to Soil Type	(m)	(kN/m ³)	(kPa)	(deg)	(k0)	(kPa)	г _w (кга)	layer	layer	(suichaige) (kPa)	layer	layer	(kN/m)	(m)	(m)	w _a (KINIII/III)	
0	-7.5	L-1	7.5	16	1	25	0.58	120.00	24.53		53.85	34.80		113.18	424.42	2.500	0	0
-7.5	-8.5	L-2	1	18	2	25	0.58	138.00	34.34	52.33	57.08	34.80	111.65	126.21	118.93	0.490	0.00	0.00
-8.5	-12	L-2	3.5	18	2	25	0.58	201.00	68.67	57.08	73.71	34.80	126.21	177.18	530.93	1.652	1.85	981.15
-12	-15	L-3	3	22	120	39	0.43	267.00	98.10	0.00	0.00	25.80	94.47	123.90	327.56	1.433	5.07	1659.85

Passive side (Earth Pressure & Water Pressure)											ressure) kPa	$P_p = P_{p1} +$	⊦ P _w (kPa)				
Depth	(MSL)	Soil Type	Thickness	γь	Cohesion	ው (deg)	Pressure	Overburden	P (kPa)	at Start of	at End of	at Start of	at End of	Passive	Centroid	Lever arm	Mp
From	to	Soli Type	(m)	(kN/m ³)	(kPa)	Φ (deg)	(k _p)	(kPa)	ι _w (κι α)	layer	layer	r layer	layer	Force (kN/m)	(m)	(m)	(kNm/m)
-12	-15	L-3	3	22	120	39	2.33	66.00	19.62	366.00	473.86	366.00	493.48	1289.21	1.426	5.07	6541.662

Driving Moment 2641 kNm/m **Resisting Moment** 6541.662 kNm/m 2.48

Factor of Safety

SAFE

Assumptions

1. If active earth pressure is observed to be negative at any depth, it has been considered as zero to be on conservative side.

2. FOS of 1.3 is assumed to be safe.

3. GWT on passive side is considered 5m below Excavation level.

4. Rankine's Earth pressure coefficients are considered.

5. Here for the conservative purpose, the At rest Earth pressure coefficient has been considered against Active earth pressure coefficient

6. Moments are taken as per lowest level struts and resistance offered by top struts is ignored.

0 MSL

-7.5 MSL

-12 MSL

-22 MSL
ANNEXURE – 4 ANALYTICAL ANALYSIS – DUDDECK/ERDMANN RESULTS

Project:	I40172							
lob No :	140172	Date:	02 09 2024	Made by:	NGn		GROU	P
<u>500 NO</u> Funnel:	140172	NATM Regula	r Section	2 Lane	Non			
Object:		SC-T						
Constr. Stage		Final Stage	/ Primary	Lining				
Chainage:		Low overburg	den					
<u>Shanaye.</u>		LOW OVEIDUI	uen					
		LINING CALCUL	ATION ACCC	RDING TO H	.DUDDECK / J	.ERDMANN		
Structure:	Temporary Shotcr	ete Lining						
	Lining Thickness		=	100	[mm]			
	Lining Stiffness		=	5.000	[MPa]	[J-II Class - 24	Hr Strength	1
	Radius		=	5.200	[m]			
			_	0.200	r1			
	Outer Radius of tu	nnel	=	5.3	[m]			
	Overburden above	tunnel axis	=	30.000	[m]			
	Surcharge		_	60.00	[kPa]			
	Salonargo		-	00.00				
	Unit Weight		=	26.00	[kN/m ³]			
	Total vertical stres	s at tunnel axis	=	840.00	[kPa]			
	Avg. unit weight in	cluding surcharge	=	30.00	[kN/m ³]			
	J	<u> </u>						
	Young's Modulus o	of ground	=	14450.00	[MPa]			
	Poisson's ratio of c	ground	=	0.20				
	Horizontal earth pr	essure coefficient	=	0.25				
	Young's Modulus of	of concrete linina	=	7500.00	[MPa]			
					1			
	Cross-sectional are	ea of Lining	=	0.10	[m ²]	b =	1.00	[m]
	Moment of Inertia		=	0.00008	[m⁴]			L J
	Average tunnel rac	dius	=	5.25	[m]			
		· - -			L			
	Stiffness ratio coef	ficients	nnrossihility	Patio of a	oil etiffnoss over	the bending	7	
		iffness of the lining	ามุเธรรเทแเห		stiffness of the liver	nina		
	31	3442036 2	<u>† </u>	102 1133333				
	L	0112000.2		1	102.1100000		_	
	Shear bond betwee	en lining and ground	d, basic specific	values for sec	tional forces		7	
	n0	n2	m2	NO	N2	M2	1	
	-	-	-	[kN]	[kN]	[kN-m]	1	
	0.012	0.025	0.000	34.30	44.455186	0.02	1	
			- 0.000	000	1	0.02	-1	
	Normal Forces due	e to earth pressure		Bendina Morr	ents due to eart	h pressure	7	
	Crown	Bench	Invert	Crown	Bench	Invert	1	
	[kN]	[kN]	[kN]	[kN-m]	[kN-m]	[kN-m]	1	
	L J	L	L	+ ·····	L			
	-10.15	78.76	-10.15	0.02	-0.02	0.02		

Basic Specific valu	es for lining deforma	Basic values for lining deformations				
w0	w2	x2	W0	W2	V2	
$[m.kN^{-1}.s^{2}]$	[m.kN ⁻¹ .s ²]	[m.kN ⁻¹ .s ²]	[mm]	[mm]	[mm]	
0.0000044	0.0000096	0.0000095	0.24	0.32	0.32	

Shear bond between lining and ground, Lining deformations							
rdc	rdb	rdi					
[mm]	[mm]	[mm]					
0.57	-0.08	0.57					

NOTE: The above calculation is based on the geometry of a full circle.

file: https://gcin.sharepoint.com/sites/I40172/Shared Documents/TEXT/TECH-DOC/Calc/Geotech/Duddeck Erdman/[SC-I SW-NATM Regular 2 Lane.xlsx]Duddeck_Erdmann

2				GC
172 Date:	02.09.2024	Made by:	NGn	G R O U P
NATM Re	egular Section 2 Lane	;		
SC-I				
Final Sta	ge / Primary Lining			
Low ove	rburden			
	172 <u>Date:</u> NATM Ro SC-I Final Sta Low ove	172 Date: 02.09.2024 NATM Regular Section 2 Land SC-I Final Stage / Primary Lining Low overburden	172 Date: 02.09.2024 Made by: NATM Regular Section 2 Lane SC-I Final Stage / Primary Lining Low overburden	172 Date: 02.09.2024 Made by: NGn NATM Regular Section 2 Lane SC-I Final Stage / Primary Lining Low overburden

Structure: Temporary Shotcrete Lining

Steel			
Characteristic strength of steel	=	500	[N/mm ²]
Partial safety factor for steel	=	1.15	
E-modulus of steel	=	200000	[N/mm ²]
Concrete			
Characteristic strength of concrete	=	25	[N/mm ²]
Partial safety factor for concrete	=	1.500	
Width of sections	=	1000	[mm]
Depth of sections	=	100	[mm]
Distance from compression / tension face		50	[]
to centroid of steel	=	50	fuuul
Effective depth of sections	=	50	[mm]

Load factor for N	1.3
Load factor for M	1.3

ANALYSIS					To account for I	_oad Factors
Location	Ν	М	N/bh	M/bh ²	Ν	М
	[kN]	[kNm]	[N/mm ²]	[N/mm ²]	[kN]	[kNm]
Main Tunnel - Crown	-10.15	0.02	-0.13	0.00	-13.20	0.03
Main Tunnel - Bench	78.76	-0.02	1.02	0.00	102.38	0.03
Main Tunnel - Invert	-10.15	0.02	-0.13	0.00	-13.20	0.03
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00

Draw Curves for

	Reinfor	cement		
	1 st layer [As']	2 nd layer [As]	As'	As
	[mm ²]	[mm ²]	[%]	[%]
Curve 1 (Unreinforced)	0	0	0	0
	100		0.100	0.000

file: https://gcin.sharepoint.com/sites/I40172/Shared Documents/TEXT/TECH-DOC/Calc/Geotech/Duddeck Erdman/[SC-I SW-NATM Regular 2 Lane.xlsx]Interaction Diagram

Project:	I40172							
Job No.:	140172	Date:	02.09.2024	Made by:	NGn		GROUP	
Tunnel:		NATM Requ	ular Section 2	Lane				
Object:		SC-I						
Constr. Stage		Final Stage	/ Primary Lini	ng				
Chainage:		Low overbu	urden					
	LINING CALCUL	ATIONS - DIST	RIBUTION OF M	OMENTS AND	SHEAR FORG	CES		
Structure:	Temporary Sho	tcrete Lining						
	Distribution of S	Shear Forces						
	Normal Forces	due to earth pr	essure	Bending Mom	ents due to e	arth pressure		
	Crown	Bench	Invert	Crown	Bench	Invert		
	[kN]	[kN]	[kN]	[kN-m]	[kN-m]	[kN-m]		
	-10.15	78.76	-10.15	0.02	-0.02	0.02		
		-		-				
	Shear Forces (I) at sections 						
	Crown 0 ⁰	45°	Bench 90 ⁰	135°	Invert 180 ⁰			
	0	-0.008	0	0.008	0			
		-		-				
	Distribution of E	Bending Mome	nts and Shear F	orces				
	Average Tunne	Radius	=	5.25	m			
	Load Factor		=	1.3				
	-	As =	188					
Location	М	V	As	100 As / bd	Vc	Actual V	Check	Utilisation
[⁰]	[kN-m/m]	[kN/m]	[mm ²]	[-]	[N/mm ²]	[N/mm ²]		[%]
0	0.02	0	188	0.38	0.38	0.00	O.K.	0.00
10	0.02	0.00	188	0.38	0.38	0.00	O.K.	0.02
20	0.02	-0.01	188	0.38	0.38	0.00	O.K.	0.04
30	0.01	-0.01	188	0.38	0.38	0.00	O.K.	0.05
40	0.00	-0.01	188	0.38	0.38	0.00	O.K.	0.06
50	0.00	-0.01	188	0.38	0.38	0.00	O.K.	0.06
60	-0.01	-0.01	188	0.38	0.38	0.00	0.K.	0.05
70	-0.02	-0.01	188	0.38	0.38	0.00	0.K.	0.04
80	-0.02	0.00	188	0.38	0.38	0.00	0.K.	0.02
90	-0.02	0	188	0.38	0.38	0.00	0.K.	0.00
100	-0.02	0.00	188	0.38	0.38	0.00	0.K.	0.02
110	-0.02	0.01	188	0.38	0.38	0.00	0.K.	0.04
120	-0.01	0.01	188	0.38	0.38	0.00	0.K.	0.05
130	0.00	0.01	188	0.38	0.38	0.00	O.K.	0.06
140	0.00	0.01	188	0.38	0.38	0.00	O.K.	0.06
150	0.01	0.01	188	0.38	0.38	0.00	O.K.	0.05
160	0.02	0.01	188	0.38	0.38	0.00	O.K.	0.04
170	0.02	0.00	188	0.38	0.38	0.00	O.K.	0.02
180	0.02	0	188	0.38	0.38	0.00	O.K.	0.00
		Mome	ent and Shear	Distribution		—— Tunnel Pro	file	

No.: 10172 Date: 0.200,2024 Made by: NCn CEROUP ekt MAYR Regular Section 2 Lane								
Image Image <t< th=""><th><u>No.:</u></th><th>I40172</th><th>Date:</th><th>02.09.2024</th><th>Made by:</th><th>NGn</th><th></th><th>GROUP</th></t<>	<u>No.:</u>	I40172	Date:	02.09.2024	Made by:	NGn		GROUP
del del del del 2.5 State Pinal Stage / Primery Lining Dage Low overburden Lining Calculation Accorpoints To Hubbbeck / JERDMANN uture: Temporary Shotzete Lining Lining Trickness = 200 [mm] Radius = 5.150 [m] Outer Radius of funnel = 5.35 [m] Outer Radius of funnel = 5.35 [m] Outer Radius of funnel axis = 25.000 [k/Pa] Outer Radius of funnel axis = 25.000 [k/Pa] Outer Radius of funnel axis = 710.00 [kPa] Outer Radius of ground = 0.25 [k/Nm ²] Poisson's ratio of ground = 0.25 [m] Modulus of concrete lining = 0.25 [m] Average turnel radius = 5.25 [m] Stiffness ratio confficients Ratio of soil stiffness over the bending stiffness over the compressibility average turnei radius 4.830666627 Stiffness of the lining stiffness of the lining stiffness over the compressibility average turnei radius	<u>nel:</u> ot:		NATM Regula	r Section 2	Lane			
Barry Burley Due overbarden Dec overbarden LINING CALCULATION ACCORDING TO H.DUDDECK / J.ERDMANN Utime Temporary Shotzete Lining Lining Stiffness = 200 [m] Que overbarden [M] [J-H] Class - 24 Hr Strength] Radius of tunnel = 5.560 [m] Outer Radius of tunnel = 5.000 [M] OuterAudin above tunnel axis = 2.000 [M] Surcharge = 0.0000 [M] Unit Weight including surcharge = 2.000 [M] Outer Radius of tunnel axis = 7.0000 [M] Young's Modulus of ground = 0.000 [M] Overson ratio of ground = 0.25 [m] Suthenes ratio coefficient s 0.00007 [m] b = 1.00 (m) Normal forces due to earth pressure coefficient s 0.00007 [m] b = 1.00 (m) Suthenes of the lining = 0.00007 [m] b = 1.00 (m)	<u>u.</u> str. Stage		SC-II (MW)	/ Primary	Lining			
$ \frac{1}{12} \\ \hline 1 \\ 1 \\$	nogo:		Low overbur	don	Dining			
LINING CALCULATION ACCORDING TO H.DUDDECK / JERDMANNJETHIC CALCULATION ACCORDING TO H.DUDDECK / JERDMANNLining Skiffness	nage.		TOM OVELDUI	den				
HereineTemporary Shoterle LiningLining Thickness=200(mil)Lining Shiffness=200(mil)Cadius=200(mil)Outer Ladius of tunnel=2.5.00(mil)Outer Ladius of tunnel=2.5.00(kVmil)Surcharge=2.5.00(kVmil)Outer Meeting attended=2.5.00(kVmil)Outer Ladius of ground=2.5.00(kVmil)Case-sectional area of Lining=0.26(mil)Case-sectional area of Lining=0.20(mil)Case-sectional area of Lining=0.20(mil)Storage tunnel axity=0.20(mil)Storage tunnel axity=0.20			LINING CALCU	LATION ACCO	RDING TO H	.DUDDECK / J.	ERDMANN	
$ \begin{array}{c} \label{eq:relation} eq:relation$	ucture:	Temporary Shotcr	ete Lining					
$ \begin{array}{c} \text{Lining} \text{Stiffness} & = & 5.000 \\ \text{Radius} & = & & 5.150 \\ \text{(m)} & \text{(J-II Class - 24 Hr Strength)} \\ \text{Radius} & = & & 5.35 \\ \text{(m)} & \text{(m)} & \text{(MPa)} \\ \text{Outer Radius of tunnel axis} & = & & 5.35 \\ \text{Surcharge} & = & & 60.00 \\ \text{(KPa)} \\ \text{Surcharge} & = & & 60.00 \\ \text{(KPa)} \\ \text{Surcharge} & = & & 29.62 \\ \text{(KNm^2)} \\ \text{Arg. unit weight including surcharge} & = & 29.62 \\ \text{(KNm^2)} \\ \text{Arg. unit weight including surcharge} & = & 29.62 \\ \text{Horizontal earth pressure coefficient} & = & 0.25 \\ \text{Horizontal earth pressure coefficient} & = & 0.33 \\ \text{Poisson's ratio of ground} & = & 0.25 \\ \text{Horizontal earth pressure coefficient} & = & 0.33 \\ \text{Moment of Inertia a concrete lining} & = & 0.20 \\ \text{Moment of Inertia a coefficient} & = & 0.30 \\ \text{Moment of Inertia a coefficient} & = & 0.20 \\ \text{Stiffness ratio coefficient} & = & 0.25 \\ \text{Torse-sectional area of Lining} & = & 0.20 \\ \text{Moment of Inertia a coefficient} & = & 0.30 \\ \text{Stiffness over the compressibility} \\ \hline \text{Ratio of soil stiffness over the bending} \\ \hline \text{stiffness over the lining} \\ \hline \text{stiffness over the compressibility} \\ \hline \text{Ratio of soil stiffness over the bending} \\ \hline \text{stiffness over the lining} \\ \hline \text{stiffness over the lining} \\ \hline \text{stiffness over the compressibility} \\ \hline \hline \text{Ratio of soil stiffness over the bending} \\ \hline \text{stiffness over the lining} \\ \hline $		Lining Thickness		=	200	[mm]		
Radius=5.150[m]Outer Radius of tunnel=5.35[m]Overburden above tunnel axis=26.000[KPa]Surcharge=60.000[KPa]Outer Radius of tunnel axis=25.06[KN/m ²]Surcharge=29.62[KN/m ²]Total vertical stress at tunnel axis=710.00[KPa]Arg. unit weight including surcharge=29.62[KN/m ²]Young's Modulus of ground=0.25[MPa]Poisson's ratio of ground=0.25[m]Morrizontal earth pressure coefficient =0.33[MPa]Young's Modulus of concrete lining=7500.00[MPa]Cross-sectional area of Lining=0.20[m ³]bMement of Inertia=0.00007[m]Wereage tunnel radius=5.25[m]Stiffness ratio coefficientsStiffness or the ining1 stiffness or the bending stiffness of the lining39813.94.636666667Shear bond between lining and ground, basic specific values for sectional forces n1 stiffness or the compressibility 1 stiffness or the lining 1 stiffness or the lining 1 stiffness or the lining 1 stiffness or the lining 		Lining Stiffness		=	5.000	[MPa]	[J-II Class - 24	Hr Strength1
Outer Radius of tunnel=5.35(m)Outer Nadius of tunnel axis=26.000(R)Surcharge=60.00(RPa)Unit Weight=25.00(R)m ¹ Total vertical stress at tunnel axis=710.00(RPa)Age, unit weight lincluding surcharge=29.62(R)m ¹ Young's Modulus of ground=0.25(R)m ² bPoisson's ratio of ground=0.25(R)m ² b(m)Young's Modulus of concrete lining=0.20(MPa)Poisson's ratio of ground=0.20(m ²)b(m)Moment of Inertia=0.00067(m ²)b(m)Moment of Inertia=0.00067(m ²)b(m)Stiffness rotic fileness=5.25(m)(m)Stiffness of the liningStiffness over the bending stiffness over the bending stiffness over the lining1.00(m)39813.94.63666667(m)(m)(m)Normal Forces due to earth pressure Total tot of soil stiffness over the bending filtenes(m)(m)134.451007.20134.451.231.231.23134.451007.20134.451.231.231.23134.451007.20134.451.231.231.23134.451007.20134.451.231.231.23134.451007.20134.451.231.231.23134.451007.20 <td< td=""><td></td><td>Radius</td><td></td><td>=</td><td>5.150</td><td>[m]</td><td>[• •</td><td></td></td<>		Radius		=	5.150	[m]	[• •	
Outer Radius of tunnel=5.35[m] m] SurchargeOverburden above tunnel axis=26.000[kPa]Surcharge=0.000[kPa]Unit Weight=25.00[kN/m²]Total vertical stress at tunnel axis=710.00[kPa]Avg. unit weight including surcharge=29.62[kN/m²]Poissor's ratio of ground=0.25[MPa]Poissor's ratio of ground=0.25[m]Horizontal earth pressure coefficient=0.33[MPa]Young's Modulus of concrete tining=7500.00[MPa]Cross-sectional area of Lining=0.206 [m²]b =1.00 [m]Average tunnel radius=5.25 [m]b =1.00 [m]Stiffness ratio coefficientsRatio of sol stiffness of the lining stiffness of the lining stiffness of the lining1.00 [m]Stiffness ratio coefficientsImage in the system in the								
Overburden above tunnel axis=26.000 60.00[m] [kPa]Surcharge=25.00 60.00[kNm ³]Unit Weight=29.62 (kNm ³)Avg. unit weight including surcharge=29.62 (kNm ³)Young's Modulus of ground=0.25 Horizontal earth pressure coefficient=Young's Modulus of concrete lining=0.25 (kNm ³)Young's Modulus of concrete lining=0.20 (m ³)b =Young's Modulus of concrete lining=0.20 (m ³)b =Moment of Inertia=0.00067 (m ³)b =1.00 (m)Moment of Inertia=0.00067 (m ³)b =1.00 (m)Stiffness of the lining stiffness of the lining stiffness out on the comment Bue to ear		Outer Radius of tu	nnel	=	5.35	[m]		
Surcharge=60.00 $[k^Pa]$ Unit Weight=25.00 $[kNm^3]$ Total vertical stress at tunnel axis=710.00 $[kPa]$ Avg. unit weight including surcharge=29.62 $[kNm^3]$ Yourg's Modulus of ground=1000.00 $[MPa]$ Total earth pressure coefficient=0.33Yourg's Modulus of concrete lining=0.20 $[m^3]$ b =1.00 $[m]$ Moment of Inertia=0.00067 $[m]$ Average tunnel radius=5.25 $[m]$ Stiffness of the liningstiffness over the bending stiffness of the lining1.00Stiffness of the liningstiffness of the lining4.63666667Stiffness of the lining af ground, basic specific values for sectional forcesM2 $nononnN2M2124.4521.00570.824.36372014124.4521007.20134.451.23124.4521007.20134.451.23124.4521007.20134.451.23124.4520.000007802.072.442000000000000000000000000000000000000$		Overburden above	tunnel axis	=	26.000	[m]		
Unit Weight=25.00 $[N/m^3]$ Total vertical stress at tunnel axis=710.00 $[NPa]$ Arg. unit weight including surcharge=29.62 $[N/m^3]$ Young's Modulus of ground=0.2510000Poisson's ratio of ground=0.2510000Poisson's ratio of ground=0.2510000Young's Modulus of concrete lining=0.20 $[m^2]$ bYoung's Modulus of concrete lining=0.20 $[m^2]$ b=1.00[m]Moment of Inertia=0.00067 $[m^3]$ d=1.00[m]Moment of Inertia=0.00067 $[m^3]$ ddd $[m]$ Average tunnel radius=5.25[m]=1.00[m]Stiffness ort the compressibilityRatio of soil stiffness over the bending stiffness of the lining stiffness of the lining stiffness of the lining stiffness of the lining stiffness ort the compressibilityRatio of soil stiffness ore the compressibility stiffness of the lining stiffness of the lining stiffness of the lining stiffness of the lining stiffness ore the compressibility o.2120.30210.000for soil stiffness stiffness of the lining stiffness of the lining stiffness of the lining deformations to a.2220.000for soil stiffness stiffness of the lining stiffness of the lining stiffness of the lining stiffness of the lining deformations to a.2220.000for soil stiffness stiffnessStiffness of the lining deformations woBasic value		Surcharge		=	60.00	[kPa]		
Unit Weight=25.00 Total vertical stress at tunnel axis=710.00 T (kPa] Arg. unit weight including surcharge=29.62 T (kPa] Arg. unit weight including surcharge=710.00 T (kPa] T (kPa] Arg. unit weight including surcharge=7300.00 T (MPa] Molulus of ground=1300.00 T (MPa] Me =(MPa] D =1.00 T (m] m)m)Young's Modulus of ground=0.25 T (mode)Molecular More arth pressure coefficient=0.33 T (mode)b =1.00 T (m]Cross-sectional area of Lining=0.200067 T (m ¹)b =1.00 T (m)Average tunnel radius=5.25 T (m)b =1.00 T (m)Stiffness ratio coefficientsTatio of soil stiffness over the bending stiffness of the lining 39813.94.636666667Shear bond between lining and ground, basic specific values for sectional forces T						-		
Total vertical stress at tunnel axis=710.00[kPa] Avg. unit weight including surcharge=710.00[kPa] Avg. unit weight including surcharge=29.62[kN/m³]Young's Modulus of ground=0.25[MPa]Poisson's ratio of ground=0.25Horizontal earth pressure coefficient=0.33Young's Modulus of concrete lining=7500.00[MPa]Cross-sectional area of Lining=0.20[m²]b =1.00[m]Moment of Inertia=0.00067[m]Average tunnel radius=5.25[m]Stiffness ratio coefficientsRatio of soil stiffness or the compressibilityRatio of soil stiffness over the bending stiffness of the lining39813.94.636666667Shear bond between lining and ground, basic specific values for sectional forces n0M2M20.2120.3220.000570.82436.3720141.23Normal Forces due to earth pressure [kN][kN][kN-m]1.231.23Normal Forces due to for lining deformations w0Basic values for lining deformations1.231.23Basic Specific values for lining deformations w0Basic values for lining deformations1.231.23Moment forces (kN][kN][kN-m][m]0.000004050.000007802.072.442.01Shear bond between lining and ground, Lining deformations m00.000004050.000007802.072.442.01Shear bond between		Unit Weight		=	25.00	[kN/m ³]		
Avg. unit weight including surcharge=29.62 $[kN/m^3]$ Young's Modulus of ground=1300.00 $[MPa]$ Poisson's ratio of ground=0.25Horizontal earth pressure coefficient=0.33Young's Modulus of concrete lining=0.20 $[m^2]$ Cross-sectional area of Lining=0.20 $[m^2]$ b=Moment of Inertia=0.00067 $[m^4]$ Average tunnel radius=5.25 $[m]$ Stiffness ratio coefficientsTatio of soil stiffness over the compressibilityRatio of soil stiffness or the bending stiffness of the lining stiffness of the lining stiffness of the lining stiffness of the lining 1.23NON2NoN2M2NoN2 <tr< td=""><td></td><td>Total vertical stres</td><td>s at tunnel axis</td><td>=</td><td>710.00</td><td>[kPa]</td><td></td><td></td></tr<>		Total vertical stres	s at tunnel axis	=	710.00	[kPa]		
Young's Modulus of ground=100.0[MPa]Poisson's ratio of ground=0.25Horizontal earth pressure coefficient=0.33Young's Modulus of concrete lining=0.20[m ²]Cross-sectional area of Lining=0.20067[m ²]Moment of Inertia=0.00067[m ²]Average tunnel radius=5.25[m]Stiffnes ratio coefficientsNotice the liningStiffness of the liningstiffness over the bendingstiffness of the lining1////////////////////////////////////		Avg. unit weight in	cluding surcharge	=	29.62	[kN/m ³]		
Young's Modulus of ground=1300.00 0.25 Mozizontia earl pressure coefficient[MPa] 0.25 MPa]Horizontal earl pressure coefficient=0.33 7600.00[MPa]Cross-sectional area of Lining=0.20 0.00067[m ²]b =1.00 [m]Moment of Inertia=0.00067 m ¹]b =1.00 moment of InertiaAverage tunnel radius=5.25 5.25[m]Stiffness ratio coefficientsTatio of soil stiffness over the compressibility stiffness of the lining stiffness of the								
Poisson's ratio of ground=0.25 0.33 Young's Modulus of concrete lining=0.20 0.7500.00[MPa]Cross-sectional area of Lining=0.20 0.00067[m ²] [m ¹]b =1.00 [m]Moment of Inertia=0.200067 (m ⁴] Average tunnel radius=5.25 0.00067[m]Stiffness ratio coefficientsTatio of soil stiffness over the compressibility stiffness of the lining 39813.9Ratio of soil stiffness over the bending stiffness of the lining 39813.9Stiffness ratio coefficientsStiffness of the lining stiffness of the lining stiffness of the lining 39813.9Acadedee667Shear bond between lining and ground, basic specific values for sectional forces n0n0n2m2N0N2[kN][kN]0.2120.3220.000570.82da6.3720141.23Dormal EnchInvertCrownBenchInvertCrownBenchInvertCrownBenchInvertCrownBasic Specific values for lining deformations w0w2w0w2x2W0W2V2(m.N ¹ .s ²](m.N ¹ .s ²](kN](kN)(kN](kN)(kN](m.N ¹ .s ²](Young's Modulus	of ground	=	1300.00	[MPa]		
Horizontal earth pressure coefficient=0.33 7500.00[MPa]Cross-sectional area of Lining=0.20 $[m^2]$ b =1.00[m]Moment of Inertia=0.00067 $[m^4]$ b =1.00[m]Moment of Inertia=5.25[m]b =1.00[m]Stiffness ratio coefficientsTatio of soil stiffness over the compressibilityRatio of soil stiffness over the bending stiffness of the lining 39813.94.636666667Steffness ratio coefficientsNormal Forces due to earth pressure 0.2120.3220.000570.82436.3720141.23Normal Forces due to earth pressure CrownBenchInvertCrownBenchInvert[KN][KN][KN-m][KN-m][KN-m]1.231.231.23Basic Specific values for lining deformations w0w2x2W0W2V2[m.KN ¹ .8 ²][m.KN ¹ .8 ²][m.KN ¹ .8 ²][mm][mm]InvertCrownBenchInvert[KN][KN-m][KN-m][KN-m]134.451.007.20134.451.23-1.231.23Stear bond between lining and ground, Lining deformations w0w0w2x2W0W2V2[m.KN ¹ .8 ²][m.KN ¹ .8 ³][mm][mm]InvertCrownBenchInvert[KN][KN-		Poisson's ratio of g	ground	=	0.25			
Young's Modulus of concrete lining=7500.00[MPa]Cross-sectional area of Lining= 0.20 $[m^2]$ b = 1.00 $[m]$ Moment of Inertia= 0.00067 $[m^1]$ b = 1.00 $[m]$ Average tunnel radius= 5.25 $[m]$ Stiffness rote officientsTatio of soil stiffness over the compressibilityRatio of soil stiffness over the bending stiffness of the lining 39813.9Shear bond between lining and ground, basic specific values for sectional forcesNo $n2$ $m2$ $N0$ $N2$ 2 0.000 570.82 436.372014 1.23 Normal Forces due to earth pressureBending Moments due to earth pressureCrownBenchInvert $Crown$ 134.45 1007.20 134.45 1.23 134.45 1007.20 134.45 1.23 134.45 1007.20 134.45 1.23 134.45 1007.20 2.07 2.44 2.01 0.00000405 0.00000946 0.00000780 2.07 2.44 2.01 1.51 0.00000405 0.00000946 0.0000780 2.07 2.44 2.01		Horizontal earth pr	essure coefficient	=	0.33			
$\begin{array}{c} Cross-sectional area of Lining & = & 0.20 & (m^2) \\ Moment of Inertia & = & 0.00067 & (m^1) \\ Average tunnel radius & = & 5.25 & (m) \end{array} \qquad $		Young's Modulus	of concrete lining	=	7500.00	[MPa]		
Cross-sectional area of Lining=0.20[m]b =1.00[m]Moment of Inertia=0.00067[m]Average tunnel radius=5.25[m]Stiffness ratio coefficientsTatio of soil stiffness over the compressibilityRatio of soil stiffness over the liningstiffness of the lining39813.94.636666667Shear bond between lining and ground, basic specific values for sectional forcesn0n2m2N0N2M2[KN][KN-m]0.2120.3220.000570.82436.3720141.23Normal Forces due to earth pressureCrownBenchInvertCrown[KN][KN][KN][KN][KN][KN-m][N][KN]134.451007.20134.451.007.20134.451.007.20134.451.0000007802.072.442.01Shear bond between lining and ground, Lining deformationsw0w2x2W0W2[m.kN ¹ .s ²][m.kN ¹ .s ²][m.k][k] </td <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>- 2-</td> <td></td> <td></td>		_				- 2-		
Moment of inertia=0.00067[m]Average tunnel radius= 5.25 [m]Stiffness ratio coefficientsRatio of soil stiffness of the liningstiffness of the lining39813.94.636666667Shear bond between lining and ground, basic specific values for sectional forcesn0n2m2N0N2M2[kN]0.2120.3220.000570.82436.3720141.23Normal Forces due to earth pressureBending Moments due to earth pressureCrownBenchInvert[kN][kN][kN-m][kN][kN][kN-m][kN][kN][kN-m][kN][kN][kN-m][kN][kN][kN-m][nkh'1.s²][m.kN'1.s²][m.kN'1.s²][m.kN'1.s²][mm][mm]0.000004050.000009460.00007802.072.442.01Shear bond between lining and ground, Lining deformationsrdcrdbrdi[mm][mm]4.51-0.364.51		Cross-sectional ar	ea of Lining	=	0.20	[m ²]	b =	1.00 [m]
Average tunnel radius = 5.25 [m] Stiffness ratio coefficients Ratio of soil stiffness over the compressibility stiffness of the lining stiffness of the lining stiffness of the lining stiffness of the lining 39813.9 4.636666667 Shear bond between lining and ground, basic specific values for sectional forces 0 N2 N2 0 n2 m2 N0 N2 M2 - - [KN] [KN] [KN-m] 0.212 0.322 0.000 570.82 436.372014 1.23 Normal Forces due to earth pressure Bending Moments due to earth pressure Invert [KN] [kN-m] 134.45 1007.20 134.45 1.23 -1.23 1.23 Basic Specific values for lining deformations Basic values for lining deformations M2 V2 [m.kN ¹ .s ²] Shear bond between lining and ground, Lining deformations 2.07 2.44 2.01 Shear bond between lining and ground, Lining deformations rdb rdi [mm] .00000405 0.00000780 2.07 2.44 2.01		Moment of Inertia		=	0.00067	[m]		
Stiffness ratio coefficientsRatio of soil stiffness over the compressibility stiffness of the liningRatio of soil stiffness over the bending stiffness of the lining 39813.939813.94.636666667Shear bond between lining and ground, basic specific values for sectional forces n0n2M2n0n2m2N0N2M2[kN][kN-m]0.2120.3220.000570.82436.3720141.23Normal Forces due to earth pressure CrownBenchInvertCrownBenchInvert[kN][kN][kN][kN-m][kN-m]134.451.007.20134.451.23-1.231.23Basic Specific values for lining deformations w0w2x2W0W2V2V2[m.kN ⁻¹ .s ²][m.kN ⁻¹ .s ²][m.m][mm][mm]0.000004050.000009460.000007802.072.442.01Shear bond between lining and ground, Lining deformations dot not imm][mm][mm][mm]4.51-0.364.51-0.364.51		Average tunnel rac	dius	=	5.25	[m]		
Summers rando coefficientsRatio of soil stiffness over the compressibility stiffness of the liningRatio of soil stiffness of the lining stiffness of the lining39813.94.636666667Shear bond between lining and ground, basic specific values for sectional forcesn0n2m2N0N2M2[kN][kN-m]0.2120.3220.000570.82436.3720141.23Normal Forces due to earth pressureBending Moments due to earth pressureCrownBenchInvert[kN][kN][kN-m]134.451007.20134.45134.451007.20134.45134.451007.20134.451.23-1.231.23Basic Specific values for lining deformations w0w2w2x2W0W2V2[m.KN ¹ .s ²][m.kN ¹ .s ³]mm][mm]0.000004050.000009460.000007802.072.442.01Shear bond between lining and ground, Lining deformations rdcrdcrdbrdcrdbrdcrdbrdcrdbrdcrdbrdcrdbrdcrdbrdcrdbrdcrdbrdcrdbrdcrdbrdcrdbrdcrdbrdc		Ctiffnoogti-	ficiente					
Stiffness of the liningstiffness of the lining39813.9stiffness of the lining39813.9A.636666667Shear bond between lining and ground, basic specific values for sectional forcesn0n2m2N0N0N2M20.2120.3220.000570.82Ad6.3720141.23Normal Forces due to earth pressureBending Moments due to earth pressureCrown Bench Invert[KN][KN][KN-m][KN][KN][KN-m]134.451007.20134.451.23- 1.23Basic Specific values for lining deformationsw0w2x2W0W2V2[m.kN ¹ .s ²][m.kN ¹ .s ²][mm][mm][mm][mm]Shear bond between lining and ground, Lining deformationsrdcrdbrdcrdbrdcrdbrdcrdbrdardi[mm][mm][mm]4.51-0.364.51		Ratio of soil st	iffness over the co	r the compressibility Ratio of soil stiffness over th				1
39813.9 4.636666667 Shear bond between lining and ground, basic specific values for sectional forces n0 n2 m2 N0 N2 M2 - - - [kN] [kN] [kN-m] 0.212 0.322 0.000 570.82 436.372014 1.23 Normal Forces due to earth pressure Bending Moments due to earth pressure Crown Bench Invert Invert [kN] [kN] [kN] [kN-m] [kN-m] 1.23 Normal Forces due to earth pressure Bench Invert Crown Bench Invert [kN] [kN] [kN] [kN-m] [kN-m] 1.23 134.45 1007.20 134.45 1.23 -1.23 1.23 Basic Specific values for lining deformations Basic values for lining deformations W0 W2 V2 [m.kN ¹ .s ²] [m.kN ¹ .s ²] [m.kN ¹ .s ²] [mm] [mm] 0.00000046 0.00000046 0.00000780 2.07 2.44 2.01 Shear bond between lin		st	iffness of the lining	,,		stiffness of the lin	ing	
Shear bond between lining and ground, basic specific values for sectional forcesn0n2m2N0N2M2[kN][kN][kN-m]0.2120.3220.000570.82436.3720141.23Normal Forces due to earth pressureCrownBenchInvertCrownBenchInvert[kN][kN][kN][kN-m][kN-m]134.451007.20134.451.23-1.231.23Basic Specific values for lining deformationsw0w2x2W0W2V2[m.kN ⁻¹ .s ²][m.kN ⁻¹ .s ²][mm][mm][mm]0.000004050.000009460.000007802.072.442.01Shear bond between lining and ground, Lining deformationsrdcrdbrdi[mm][mm][mm]4.51-0.364.51			39813.9			4.636666667		
Shear bond between lining and ground, basic specific values for sectional forces M2 M2 n0 n2 m2 N0 N2 M2 - - [kN] [kN] [kN-m] 0.212 0.322 0.000 570.82 436.372014 1.23 Normal Forces due to earth pressure Bending Moments due to earth pressure Invert Invert [kN] [kN-m] [kN] [kN] [kN] [kN-m] [kN-m] [kN-m] 134.45 1007.20 134.45 1.23 -1.23 1.23 Basic Specific values for lining deformations Basic values for lining deformations Basic values for lining deformations w0 w2 x2 W0 W2 V2 [m.kN ⁻¹ .s ²] [m.kN ⁻¹ .s ²] [mm] [mm] 0.00000405 0.00000780 2.07 2.44 2.01 Shear bond between lining and ground, Lining deformations rdi rdi rdi [mm] [mm] [mm] [mm] 4.51 -0.36 4.51								1
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Shear bond betwe	en lining and grour	nd, basic specific	values for sec	tional forces		
- - [kN] [kN] [kN-m] 0.212 0.322 0.000 570.82 436.372014 1.23 Normal Forces due to earth pressure Bending Moments due to earth pressure Crown Bench Invert Crown Bench Invert [kN] [kN] [kN] [kN-m] [kN-m] 134.45 1007.20 134.45 1.23 -1.23 1.23 Basic Specific values for lining deformations Basic values for lining deformations Basic values for lining deformations w0 w2 v2 [m.kN ⁻¹ .s ²] [m.kN ⁻¹ .s ²] [m.kN ⁻¹ .s ²] [mm] [mm] 0.00000405 0.00000946 0.00000780 2.07 2.44 2.01 Shear bond between lining and ground, Lining deformations rdi rdi rdi rdi [mm] [mm] [mm] [mm] 1 4.51 -0.36 4.51		n0	n2	m2	N0	N2	M2	-
0.212 0.322 0.000 570.82 436.372014 1.23 Normal Forces due to earth pressure Bending Moments due to earth pressure Crown Bench Invert Crown Bench Invert [kN] [kN] [kN] [kN-m] [kN-m] 134.45 1007.20 134.45 1.23 -1.23 1.23 Basic Specific values for lining deformations Basic values for lining deformations Basic values for lining deformations Basic values for lining deformations w0 w2 x2 W0 W2 V2 [m.kN ⁻¹ .s ²] [m.kN ⁻¹ .s ²] [mm] [mm] 0.00000405 0.00000946 0.00000780 2.07 2.44 2.01 Shear bond between lining and ground, Lining deformations rdi rdi rdi [mm] [mm] [mm] 4.51 -0.36 4.51		-	-	-	[kN]	[kN]	[kN-m]	4
Normal Forces due to earth pressureBending Moments due to earth pressureCrownBenchInvertCrownBenchInvert[kN][kN][kN][kN-m][kN-m][kN-m]134.451007.20134.451.23-1.231.23Basic Specific values for lining deformationsBasic values for lining deformationsBasic values for lining deformationsw0w2x2W0W2V2[m.kN ⁻¹ .s ²][m.kN ⁻¹ .s ²][m.m][mm]0.000004050.000009460.00007802.072.44Shear bond between lining and ground, Lining deformationsrdi[mm][mm][mm]4.51-0.364.51		0.212	0.322	0.000	570.82	436.372014	1.23]
Informal Forces due to earth pressureBending Moments due to earth pressureCrownBenchInvertCrownBenchInvert $[kN]$ $[kN]$ $[kN]$ $[kN-m]$ $[kN-m]$ $[kN-m]$ 134.451007.20134.451.23-1.231.23Basic Specific values for lining deformationsw0w2x2W0W2V2 $[m.kN^{-1}.s^2]$ $[m.kN^{-1}.s^2]$ $[mm]$ $[mm]$ 0.000004050.000009460.000007802.072.442.01Shear bond between lining and ground, Lining deformationsrdcrdbrdi $[mm]$ $[mm]$ $[mm]$ 4.51-0.364.51		Name of East	4		Den alter a 14			1
Crown Bench Invert Crown Bench Invert [kN] [kN] [kN] [kN-m] [kN-m] [kN-m] 134.45 1007.20 134.45 1.23 -1.23 1.23 Basic Specific values for lining deformations Basic values for lining deformations Basic values for lining deformations W2 V2 [m.kN ¹ .s ²] [m.kN ⁻¹ .s ²] [m.kN ¹ .s ²] [mm] [mm] 0.00000405 0.00000946 0.0000780 2.07 2.44 2.01 Shear bond between lining and ground, Lining deformations rdi rdi rdi rdi [mm] [mm] [mm] [mm] fm] fm] fm]		Normal Forces due	e to earth pressure		Bending Mor	ents due to earth	n pressure	-
IKNJ IKNJ IKNJ IKN-mj IKN-mj IKN-mj 134.45 1007.20 134.45 1.23 -1.23 1.23 Basic Specific values for lining deformations Basic values for lining deformations Basic values for lining deformations w0 w2 x2 W0 W2 V2 [m.KN ¹ .s ²] [m.KN ⁻¹ .s ²] [m.KN ¹ .s ²] [mm] [mm] 0.00000405 0.00000946 0.00000780 2.07 2.44 2.01 Shear bond between lining and ground, Lining deformations rdi mm] [mm] mm] 4.51 -0.36 4.51 -0.36 4.51 -0.36		Crown	Bench	Invert	Crown	Bench	Invert	4
InstantInstantInstantInstantBasic Specific values for lining deformationsBasic values for lining deformationsw0w2x2W0W2 $[m.kN^1.s^2]$ $[m.kN^1.s^2]$ $[m.kN^1.s^2]$ $[mm]$ 0.000004050.000009460.000007802.072.44Shear bond between lining and ground, Lining deformationsrdi $[mm]$ $[mm]$ $[mm]$ 4.51-0.364.51		[KIN]	[KIN]	[KIN]	[KIN-M]	[KIN-M]	[KIN-M]	-
Basic Specific values for lining deformationsBasic values for lining deformationsw0w2x2W0W2V2[m.kN ⁻¹ .s ²][m.kN ⁻¹ .s ²][mm][mm][mm]0.000004050.000009460.000007802.072.442.01Shear bond between lining and ground, Lining deformationsrdcrdbrdi[mm][mm][mm]4.51-0.364.51		104.40	1007.20	104.45	1.23	-1.23	1.23	J
w0 w2 x2 W0 W2 V2 [m.kN ¹ .s ²] [m.kN ¹ .s ²] [m.kN ¹ .s ²] [mm] [mm] 0.00000405 0.00000946 0.00000780 2.07 2.44 2.01 Shear bond between lining and ground, Lining deformations rdc rdb rdi [mm] [mm] [mm] 4.51 -0.36 4.51		Basic Specific volu	les for lining deform	nations	Basic values	for lining deforma	ations	1
Image: Model of the second s				v2	W/O	W/2	\/2	1
Intervisit Intervi		[m kN ⁻¹ e ²]	 [m kN ⁻¹ s ² 1	[m kN ⁻¹ e ² 1	[mm]		v∠ [mm]	1
Shear bond between lining and ground, Lining deformations rdc rdb [mm] [mm] 4.51 -0.36 4.51		0.00000405	0.00000946	0.00000780	2 07	2 44	2 01	1
Shear bond between lining and ground, Lining deformationsrdcrdbrdi[mm][mm][mm]4.51-0.364.51		0.00000400	0.00000040	0.00000100	2.07	2.77	2.01	J
rdc rdb rdi [mm] [mm] [mm] 4.51 -0.36 4.51		Shear bond betwe	en lining and arour	nd, Linina deform	ations			1
[mm] [mm] [mm] 4.51 -0.36 4.51		r	dc	rc	db	ro	di	
4.51 -0.36 4.51		Ín	nm]	[m	ım]	[m	m]	1
·,		4	.51	-0.	.36	4.	51	1
		·						4

file: https://gcin.sharepoint.com/sites/I40172/Shared Documents/TEXT/TECH-DOC/Calc/Geotech/Duddeck Erdman/[SC-II MW-NATM-Regular-2Lane.xlsx]Duddeck_Erdmann

Project:	I40172
----------	--------

								-
Job No.:	140172	Date:	02.09.2024	Made by:	NGn		GROUP	
Tunnel:		NATM Regular	Section 2 Lane)				
Object:		SC-II (MW)						
Constr. Stage		Final Stage / Pi	rimary Lining					
Chainage:		Low overburde	n					
Structure:	Temporary Shotcrete L	.ining						
		Ŭ						
	Steel							
	Characteristic strength	of steel	=	500	[N/mm ²]			
	Partial safety factor for	steel	=	1.15				
	E-modulus of steel		=	200000	[N/mm ²]			
	Concrete				2			
	Characteristic strength	of concrete	=	25	[N/mm ²]			
	Partial safety factor for	concrete	=	1.500				
	Width of agations		_	1000	[mm]			
	Dopth of soctions		-	200	[[]]]]			
	Depth of sections	sion / tonsion food	_	200	[IIIIII]			
	to centroid of steel		-	50	[mm]			
	Effective depth of section	ons	_	150	[mm]			
					[]			
	Load factor for N			1.3	1			
	Load factor for M			1.3				
					-			
	ANALYSIS		•			To account for	Load Factors	
	Location	N	M	N/bh	M/bh ²	N	М	
		[kN]	[kNm]	[N/mm ²]	[N/mm ²]	[kN]	[kNm]	

Location	N	M	N/bh	M/bh ²	Ν	M
	[kN]	[kNm]	[N/mm ²]	[N/mm ²]	[kN]	[kNm]
Main Tunnel - Crown	134.45	1.23	0.87	0.04	174.79	1.60
Main Tunnel - Bench	1007.20	-1.23	6.55	0.04	1309.35	1.60
Main Tunnel - Invert	134.45	1.23	0.87	0.04	174.79	1.60
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00

Draw Curves for ..

Reinforcement									
1 st layer [As'] 2 nd layer [As] As' As									
	[mm ²]	[mm ²]	[%]	[%]					
Curve 1 (Unreinforced)	0	0	0	0	[As'+				
Curve 2 (Reinforced)	188	188	0.094	0.094	[As'+				

Project:	I40172							~
lob No :	140172	Data:	02.00.2024	Mada by:	NCp		GROUP	
Tunnel:	140172	NATM Regi	ular Section 2	Lane	NGII		0.000	
Object:		SC-II (MW)						
Constr. Stage		Final Stage	/ Primary Lini	ng				
Chainage:		Low overbl	urden					
Structure:	LINING CALCUL Temporary Sho	ATIONS - DIST tcrete Lining	RIBUTION OF N	IOMENTS AND	SHEAR FOR	CES		
	Distribution of S	Shear Forces						
	Normal Forces	due to earth pr	essure	Bending Mom	ents due to e	arth pressure		
	Crown	Bench		Crown	Bench	Invert		
	[KIN] 134.45	[KIN] 1007-20	[KIN] 134.45	[KIN-III] 1.23	[KIN-III] _1.23	[KIN-III] 1.23		
	104.40	1007.20	104.40	1.20	-1.20	1.20	1	
	Shear Forces (\	/) at sections						
	Crown 0 ⁰	45°	Bench 90 ⁰	135°	Invert 180 ⁰			
	0	-0.469	0	0.469	0			
	Distribution of E Average Tunnel Load Factor	ending Mome I Radius	nts and Shear F = =	Forces 5.25 1.3	m			
		As =	376					
Location	M ficht er /ers]	V ficht/real	As [m=2]	100 As / bd	Vc	Actual V	Check	Utilisation
	[KIN-m/m] 1.23	[KIN/m] 0	[mm] 376	0.25	0.38	0.00	0.K.	0.00
10	1.16	-0.16	376	0.25	0.38	0.00	0.K.	0.37
20	0.94	-0.30	376	0.25	0.38	0.00	0.K.	0.69
30	0.62	-0.41	376	0.25	0.38	0.00	0.K.	0.93
40	0.21	-0.46	376	0.25	0.38	0.00	0.K.	1.06
50	-0.21	-0.46	376	0.25	0.38	0.00	0.K.	1.06
70	-0.62	-0.41	376	0.25	0.38	0.00	0.K.	0.93
80	-1.16	-0.16	376	0.25	0.38	0.00	0.K.	0.37
90	-1.23	0	376	0.25	0.38	0.00	0.K.	0.00
100	-1.16	0.16	376	0.25	0.38	0.00	0.K.	0.37
110	-0.94	0.30	376	0.25	0.38	0.00	0.K.	0.69
120	-0.62	0.41	376	0.25	0.38	0.00	0.K.	0.93
140	0.21	0.46	376	0.25	0.38	0.00	0.K.	1.06
150	0.62	0.41	376	0.25	0.38	0.00	0.K.	0.93
160	0.94	0.30	376	0.25	0.38	0.00	0.K.	0.69
170	1.16	0.16	376	0.25	0.38	0.00	0.K.	0.37
180	1.23	0	376	0.25	0.38	0.00	0.K.	0.00
		Mome	ent and Shear	Distribution		Tunnel Pro	file ribution istribution	
			2		<u></u>			
	-{ -{	3 -6	-4 -2	0 2	4 6	8		
		į	a la construction de la construction de la construcción de la construc					
file: https://gcin	.sharepoint.com/sites	s/I40172/Shared D	-e	ECH-DOC/Calc/G	eotech/Duddeck	Erdman/[SC-II MW	-NATM-Regular-2L	_ane.xlsx]Shear Fo

Project:	I40172						
lob No.:	I40172	<u>Date:</u>	02.09.2024	<u>Made by:</u>	NGn		GROUP
<u>unnel:</u>		NATM Vehicu	lar Cross P	assage 1 I	lane		
bject:		SC-II (MW)					
onstr. Stage		Final Stage	/ Primary	Lining			
hainage:		Low overbure	den				
		LINING CALCUL	ATION ACCO	RDING TO H	I.DUDDECK / J.	ERDMANN	
<u>Structure:</u>	Temporary Shotcr	ete Lining					
	Lining Thickness		=	200	[mm]		
	Lining Stiffness		=	5.000	[MPa]	[J-II Class - 24	4 Hr Strength]
	Radius		=	3.700	[m]		
	Outer Radius of tu	innel	=	3.9	[m]		
	Overburden above	e tunnel axis	_	26.000	[m]		
	Surcharge		=	0.00	[kPa]		
	2				[~]		
	Unit Weight		=	25.00	[kN/m ³]		
	Total vertical stres	s at tunnel axis	=	555.00	[kPa]		
	Avg. unit weight in	cluding surcharge	=	21.35	[kN/m ³]		
	Youna's Modulus a	of ground	=	1300.00	[MPa]		
	Poisson's ratio of g	ground	=	0.25			
	Horizontal earth pr	ressure coefficient	=	0.33			
	Young's Modulus o	of concrete lining	=	7500.00	[MPa]		
	Cross-sectional ar	rea of Lining	_	0.20	[m ²]	h –	1 00 [m]
	Moment of Inertia		_	0.00067	[m ⁴]	5 -	
	Average tunnel rad	dius	_	3.80	[m]		
			_	0.00	[]		
	Stiffness ratio coel	fficients tiffness over the cor	npressibility	Ratio of s	soil stiffness over	the bending	7
	st	tiffness of the lining			stiffness of the lin	ing	
		15422.9			3.38	¥.	
							7
	Shear bond betwe	en lining and ground	d, basic specific	values for sec	tional forces	MO	
	-	-				IVI∠ [kN-m]	-
	0.270	0 385	0.000	278.62	271 7/2525	1 1 2	-
	0.270	0.000	0.000	570.02	211.140000	1.10	
	Normal Forces due	e to earth pressure		Bending Mor	nents due to earth	n pressure	
	Crown	Bench	Invert	Crown	Bench	Invert	
	[kN]	[kN]	[kN]	[kN-m]	[kN-m]	[kN-m]	
	106.87	650.37	106.87	1.18	-1.18	1.18	
	Basic Specific valu	les for lining deform	ations	Basic values	for lining deforms	ations	7
	- Duoio Opooliio valu				TOT INTING GOLUTING		

Shear bond between lining and ground, Lining deformations						
rdc rdb rdi						
[mm]	[mm]	[mm]				
2.27	-0.25	2.27				

W0

[mm]

1.01

W2

[mm]

1.26

V2

[mm]

0.99

x2

[m.kN⁻¹.s²]

0.00000533

NOTE: The above calculation is based on the geometry of a full circle.

w2

[m.kN⁻¹.s²]

0.00000677

w0

[m.kN⁻¹.s²]

0.00000274

file: https://gcin.sharepoint.com/sites/I40172/Shared Documents/TEXT/TECH-DOC/Calc/Geotech/Duddeck Erdman/[SC-II MW-NATM-VCP -1Lane.xlsx]Duddeck_Erdmann

Project:	140172					
<u>Job No.:</u>	l40172 Da	<u>ate:</u>	02.09.2024	Made by:	NGn	G R O U P
<u>Tunnel:</u>	NA	TM Vehicula	r Cross Passag	je 1 Lane		
<u>Object:</u>	SC	-II (MW)				
Constr. Stage	<mark>Fin</mark>	al Stage / Pri	imary Lining			
<u>Chainage:</u>	Lov	w overburde	n			
<u>Structure:</u>	Temporary Shotcrete Lining					
	O (1					
	Steel			500	1 11 21	
	Characteristic strength of ste	el	=	500	[N/mm ⁻]	
	Partial safety factor for steel		=	1.15	2	
	E-modulus of steel		=	200000	[N/mm²]	
	•					
	Concrete				2	
	Characteristic strength of cor	ncrete	=	25	[N/mm²]	
	Partial safety factor for concr	ete	=	1.500		
	Width of sections		=	1000	[mm]	
	Depth of sections		=	200	[mm]	
	Distance from compression /	tension face		50	[mm]	
	to centroid of steel		=	50	funui	

Load factor for N	1.3
Load factor for M	1.3

=

ANALYSIS	NALYSIS								
Location	N	М	N/bh	M/bh ²	Ν	М			
	[kN]	[kNm]	[N/mm ²]	[N/mm ²]	[kN]	[kNm]			
Main Tunnel - Crown	106.87	1.18	0.69	0.04	138.93	1.53			
Main Tunnel - Bench	650.37	-1.18	4.23	0.04	845.48	1.53			
Main Tunnel - Invert	106.87	1.18	0.69	0.04	138.93	1.53			
	0.00	0.00	0.00	0.00	0.00	0.00			
	0.00	0.00	0.00	0.00	0.00	0.00			
	0.00	0.00	0.00	0.00	0.00	0.00			
	0.00	0.00	0.00	0.00	0.00	0.00			
	0.00	0.00	0.00	0.00	0.00	0.00			
	0.00	0.00	0.00	0.00	0.00	0.00			
	0.00	0.00	0.00	0.00	0.00	0.00			
	0.00	0.00	0.00	0.00	0.00	0.00			

150

[mm]

Draw Curves for

Effective depth of sections

Reinforcement								
	1 st layer [As']	2 nd layer [As]	As'	As				
	[mm ²]	[mm ²]	[%]	[%]				
Curve 1 (Unreinforced)	0	0	0	0				
	100	0	0.004	0.000				

file: https://gcin.sharepoint.com/sites/I40172/Shared Documents/TEXT/TECH-DOC/Calc/Geotech/Duddeck Erdman/[SC-II MW-NATM-VCP -1Lane.xlsx]Interaction Diagram

Project:	I40172							
Job No.:	140172	Date:	02.09.2024	Made by:	NGn		GROUP	
Tunnel:	110112	NATM Vehi	cular Cross Pa	assage 1 Lane				
Obiect:		SC-II (MW)						
Constr. Stage		Final Stage	/ Primary Lini	ng				
Chainage:	L	Low overbu	urden					
Structure:	LINING CALCUL Temporary Sho	ATIONS - DIST tcrete Lining	RIBUTION OF M	IOMENTS AND	SHEAR FOR	CES		
	Distribution of S	Shear Forces					_	
	Normal Forces	due to earth pr	essure	Bending Morr	nents due to e	earth pressure		
	Crown	Bench	Invert	Crown	Bench	Invert		
	[kN]	[kN]	[kN]	[kN-m]	[kN-m]	[kN-m]		
	106.87	650.37	106.87	1.18	-1.18	1.18		
		0				1		
	Shear Forces (\	/) at sections		0				
	Crown 0°	45°	Bench 90°	135°	Invert 180°			
	0	-0.621	0	0.621	0	J		
	Distribution of B Average Tunnel Load Factor	Bending Momer I Radius	nts and Shear F = =	Forces 3.80 1.3	m			
		As =	188	3				
Location	М	V	As	100 As / bd	Vc	Actual V	Check	Utilisation
[⁰]	[kN-m/m]	[kN/m]	[mm ²]	[-]	[N/mm ²]	[N/mm ²]		[%]
0	1.18	0	188	0.13	0.38	0.00	0.K.	0.00
10	1.11	-0.21	188	0.13	0.38	0.00	0.K.	0.49
20	0.90	-0.40	188	0.13	0.38	0.00	0.K.	0.92
30	0.59	-0.54	188	0.13	0.38	0.00	0.K.	1.24
40	0.20	-0.61	188	0.13	0.38	0.01	0.K.	1.41
50	-0.20	-0.61	188	0.13	0.38	0.01	0.K.	1.41
60	-0.59	-0.54	188	0.13	0.38	0.00	0.K.	1.24
70	-0.90	-0.40	188	0.13	0.38	0.00	0.K.	0.92
80	-1.11	-0.21	188	0.13	0.38	0.00	0.K.	0.49
90	-1.18	0	188	0.13	0.38	0.00	0.K.	0.00
100	-1.11	0.21	188	0.13	0.38	0.00	0.K.	0.49
110	-0.90	0.40	188	0.13	0.38	0.00	0.K.	0.92
120	-0.59	0.54	188	0.13	0.38	0.00	0.K.	1.24
130	-0.20	0.61	188	0.13	0.38	0.01	0.K.	1.41
140	0.20	0.61	188	0.13	0.38	0.01	0.K.	1.41
150	0.59	0.54	188	0.13	0.38	0.00	0.K.	1.24
160	0.90	0.40	188	0.13	0.38	0.00	0.K.	0.92
170	1.11	0.21	188	0.13	0.38	0.00	0.K.	0.49
180	1.18	0	188	0.13	0.38	0.00	0.K.	0.00
		Mome	ent and Shear	Distribution	l	Tunnel Pro	ofile	

oject:	I40172							
ob No :	140172	Date:	02.00.2024	Mada by:	NGn		GROU	P
unnel:	140172	NATH Regular	n Section 2		NGII			
hipct:		SC-III (CW-	Soil)	Папе				
onstr Stage		Final Stage	/ Primary	Lining				
hainada.		Low overburg	/ IIImary	g				
<u>mamage.</u>								
		LINING CALCUL	ATION ACCO	RDING TO H	.DUDDECK / J	ERDMANN		
Structure:	Temporary Shotcr	ete Lining						
	Lining Thickness		=	300	[mm]			
	Lining Stiffness		=	5.000	[MPa]	[J-II Class - 24	4 Hr Strength	n]
	Radius		=	5.200	[m]			
	Outer Radius of tu	nnel	=	5.5	[m]			
	Overburden above	e tunnel axis	=	17.000	[m]			
	Surcharge		=	0.00	[kPa]			
					[··· •]			
	Unit Weight		=	18.00	[kN/m ³]			
	Total vertical stres	s at tunnel axis	=	306.00	[kPa]			
	Avg. unit weight in	cluding surcharge	=	18.00	[kN/m ³]			
	Young's Modulus	of ground	=	25.00	[MPa]			
	Poisson's ratio of g	ground	=	0.30				
	Horizontal earth pr	essure coefficient	=	0.58				
	Young's Modulus	of concrete lining	=	7500.00	[MPa]			
	Cross-sectional ar	ea of Lining	=	0.30	[m ²]	b =	1.00	[m]
	Moment of Inertia	·	=	0.00225	[m⁴]			
	Average tunnel rac	dius	=	5.35	[m]			
	Stiffness ratio coel	fficients						
	Ratio of soil st	tiffness over the con	npressibility	Ratio of s	oil stiffness over	the bending	7	
	st	iffness of the lining		<u>ا</u>	stiffness of the lin	ning	4	
		246.5			0.061111111			
	Shear bond betwe	en lining and ground	d, basic specific	values for sec	tional forces		7	
	n0	n2	m2	NO	N2	M2		
	-	-	-	[kN]	[kN]	[kN-m]		
	0.955	0.747	0.023	1234.95	256.874657	41.83		
	Normal Forces due	e to earth pressure		Bendina Morr	nents due to earth	n pressure	7	
	Crown	Bench	Invert	Crown	Bench	Invert	1	
	[kN]	[kN]	[kN]	[kN-m]	[kN-m]	[kN-m]	1	
	978.07	1491.82	978.07	41.83	-41.83	41.83]	
				1			-	
	Basic Specific valu	les for lining deform	ations	Basic values	for lining deforma	ations		

Basic Specific values for lining deformations				Basic values for lining deformations			
	w0	w2	x2	W0	W2	V2	
	[m.kN ⁻¹ .s ²]	[m.kN ⁻¹ .s ²]	[m.kN ⁻¹ .s ²]	[mm]	[mm]	[mm]	
	0.00001284	0.00041111	0.00021042	3.10	26.42	13.52	

Shear bond between lining and ground, Lining deformations				
rdc rdb rdi				
[mm]	[mm]	[mm]		
29.52	-23.31	29.52		

NOTE: The above calculation is based on the geometry of a full circle.

file: https://gcin-my.sharepoint.com/personal/naga_gopinath_geoconsult_co_in/Documents/Desktop/[Annexure-4 (SC-III).xlsx]Duddeck_Erdmann

Project:	140172				
Job No.:	I40172 <u>Date:</u>	02.09.2024	Made by:	NGn	G R O U P
<u>Tunnel:</u>	NATM Regu	ular Section 2 Lane			
<u>Object:</u>	SC-III (CW-S	Soil)			
Constr. Stage	Final Stage	/ Primary Lining			
<u>Chainage:</u>	Low overbu	ırden			
Structure:	Temporary Shotcrete Lining				
	Steel			2	
	Characteristic strength of steel	=	500	[N/mm ²]	
	Partial safety factor for steel	=	1.15		
	E-modulus of steel	=	200000	[N/mm ²]	
	Concrete				
	Characteristic strength of concrete	=	25	[N/mm ²]	
	Partial safety factor for concrete	=	1.500		
	Width of sections	=	1000	[mm]	
	Depth of sections	=	300	[mm]	
	Distance from compression / tension to centroid of steel	face =	50	[mm]	

Load factor for N	1.3
Load factor for M	1.3

=

ANALYSIS					To account for I	_oad Factors
Location	Ν	М	N/bh	M/bh ²	Ν	М
	[kN]	[kNm]	[N/mm ²]	[N/mm ²]	[kN]	[kNm]
Main Tunnel - Crown	978.07	41.83	4.24	0.60	1271.50	54.38
Main Tunnel - Bench	1491.82	-41.83	6.46	0.60	1939.37	54.38
Main Tunnel - Invert	978.07	41.83	4.24	0.60	1271.50	54.38
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00

250

[mm]

Draw Curves for

Effective depth of sections

Reinforcement					
	1 st layer [As']	2 nd layer [As]	As'	As	
	[mm ²]	[mm ²]	[%]	[%]	
Curve 1 (Unreinforced)	0	0	0	0	
	4.00	400	0.000	0.000	

Project:	I40172							
Job No.:	40172	Date:	02.09.2024	Made by:	NGn		GROUP	
Tunnel:		NATM Reg	ular Section 2	Lane				
Object:		SC-III (CW-	Soil)					
Constr. Stage		Final Stage	/ Primary Lini	ng				
Chainage:		Low overbu	urden					
Structure:	LINING CALCUL Temporary Sho	ATIONS - DIST	RIBUTION OF M	IOMENTS AND	SHEAR FOR	CES		
	Distribution of S	Shear Forces					1	
	Normal Forces	due to earth pr	essure	Bending Morr	nents due to e	earth pressure		
	Crown	Bench	Invert	Crown	Bench	Invert		
	[kN]	[kN]	[kN]	[kN-m]	[kN-m]	[kN-m]		
	978.07	1491.82	978.07	41.83	-41.83	41.83		
	Shear Forces ()	V) at sections						
	$Crown 0^0$	15°	Bench 90 ⁰	135 ⁰	Invert 180 ⁰			
		-15 630		15 630	0			
	0	-13.039	0	15.059	0			
	Distribution of E Average Tunne Load Factor	Bending Momei I Radius	nts and Shear F = =	Forces 5.35 1.3	m			
		As =	376	i				
Location	М	V	As	100 As / bd	Vc	Actual V	Check	Utilisation
[⁰]	[kN-m/m]	[kN/m]	[mm ²]	[-]	[N/mm ²]	[N/mm ²]		[%]
0	41.83	0	376	0.15	0.38	0.00	O.K.	0.00
10	39.31	-5.35	376	0.15	0.38	0.03	O.K.	7.38
20	32.05	-10.05	376	0.15	0.38	0.05	O.K.	13.87
30	20.92	-13.54	376	0.15	0.38	0.07	O.K.	18.68
40	7.26	-15.40	376	0.15	0.38	0.08	O.K.	21.24
50	-7.26	-15.40	376	0.15	0.38	0.08	O.K.	21.24
60	-20.92	-13.54	376	0.15	0.38	0.07	O.K.	18.68
70	-32.05	-10.05	376	0.15	0.38	0.05	O.K.	13.87
80	-39.31	-5.35	376	0.15	0.38	0.03	O.K.	7.38
90	-41.83	0	376	0.15	0.38	0.00	O.K.	0.00
100	-39.31	5.35	376	0.15	0.38	0.03	O.K.	7.38
110	-32.05	10.05	376	0.15	0.38	0.05	O.K.	13.87
120	-20.92	13.54	376	0.15	0.38	0.07	O.K.	18.68
130	-7.26	15.40	376	0.15	0.38	0.08	0.K.	21.24
140	7.26	15.40	376	0.15	0.38	0.08	0.K.	21.24
150	20.92	13.54	376	0.15	0.38	0.07	0.K.	18.68
160	32.05	10.05	376	0.15	0.38	0.05	O.K.	13.87
170	39.31	5.35	376	0.15	0.38	0.03	O.K.	7.38
180	41.83	0	376	0.15	0.38	0.00	O.K.	0.00
		Mome	ent and Shear	Distribution		—— Tunnel Pro	file	

ANNEXURE – 5 PIPE ROOF CHECK

5 HO 50 50

Project IDI40172Project DescriptionNATM REGULAR SECTION 2 LANE

CONSULTANCY SERVICES FOR PREPRATION OF DPR FOR THE WORK OF CONSTRUCTION OF UNDERGROUND VEHICULAR TUNNELFROM HEBBAL ESTEEM MALL JUNCTION TO SILK BOARD KSRP JUNCTION

		C	VERVIEV	V
Cross Section		Regular Secti	on -2 Lan	es
Material above Crown		Soil		
Material in Face		Soil		
max. Overburden	[m]	11	Н	
Surface Load	[kN/m2]	60	[-]	

Soil Properties			
dry weight	[kN/m3]	17	γdry
wet weight	[kN/m3]	18	γwet
angle of friction	[°]	25	Φ
cohesion	[kPa]	2	С
Coeff. Lateral press.	[-]	0.58	Ko
Coeff. Lateral press.	[-]	0.58	Ko

Cross Section				
equ. Radius	[m]	3.94	R0	circular Cross Section assumed
Height of Face	[m]	5.5	hf	Top Heading only
ass. Wedge Width	[m]	8.9	bf	

Vertical Loading acc. to Terzaghi

h0	[m]	11.2
	weigh	t, dry
Pe1	[kPa]	199.4
h0	[m]	11.1
	weigh	t, wet
B1	[m]	7.2

load to be taken by liner		
B1	[m]	7.2
Pe1	[kPa]	199.4
Plin	[kN/m]	1435.5
d_lin	[m]	0.3
s_lin	[MPa]	4.8

 $\begin{aligned} \mathbf{h}_{0} &= \mathbf{B}_{1} \left[1 - \mathbf{C}/\mathbf{B}_{1} \gamma \right] \left\{ 1 - \exp\left(-\mathbf{k}_{0} \tan\left(\phi\right) \mathbf{H}/\mathbf{B}_{1} \right) \right] / \mathbf{K}_{0} \tan\left(\phi\right) + \mathbf{P}_{0} \exp\left\{ -\mathbf{K}_{0} \tan\left(\phi\right) \mathbf{H}/\mathbf{B}_{1} \right\} / \gamma \end{aligned}$

PIPE ROOF UMBRELLA

Note: The sketches above are of a typical example

Angle of Inclination

β= R=	7.00 3.94	[°] [m]
I		2
L	- sin	β
L=	<u>32.33</u>	[m]
S=	0.3	[m]
<i>α</i> =	$\frac{s * 180}{L * \pi}$	
α=	0.53	[°]

where s is c/c piperoof spacing

Annexure-5

1.) Analysis in respect to bending:

Note: The sketches above are of a typical example

l= <u>1.00</u> [m] M= <u>-6.23</u> [kNm]

Bending moment permissible for the steel pipe:

$$W_{Stahlrohr} = \frac{\pi}{32} * \frac{d_a^4 - d_i^4}{d_a}$$

2.) Ultimate load state:

Pipe is loaded up to yield load of steel

M= <u>19.15</u> [kNm]

$$M_{A} = M_{B} = -\frac{\sigma_{V3D} . l^{2}}{12} * b$$

$$b_{erf} = -\frac{12 . M}{\sigma_{V3D} * l^{2}}$$

Note: The sketches above are of a typical example

b_{erf.}= <u>1.27</u> [m] >b_{vorh.}= 0.41

[m]

 $\bf 3.$) It is assumed that due to the beginning arch effect the load transfer occurs through the core area of the cross section.

Circular section:
$$k = \frac{d}{8}$$

Area outside the circular cross section which might have been improved are not taken into account for the load transfer.

Area Pipe Area concrete

Note: The sketches above are of a typical example

$$H = \frac{\sigma_V * l_{Sb.}^2}{8 * f}$$

$$H= 326.78 \text{ [kN]}$$

$$A_{R}= 21.38 \text{ [cm^2]}$$

$$A_{B}= 81.23 \text{ [cm^2]}$$

$$F_{zul}= 921.29 \text{ [kN]} >F_{vorh}= 326.78 \text{ [kN]}$$

ANNEXURE – 6 FACE STABILITY

5HO 500 5HZ

Project IDI40172Project DescriptionNATM REGULAR SECTION 2 LANE

CONSULTANCY SERVICES FOR PREPRATION OF DPR FOR THE WORK OF CONSTRUCTION OF UNDERGROUND VEHICULAR TUNNELFROM HEBBAL ESTEEM MALL JUNCTION TO SILK BOARD KSRP JUNCTION

		C	VERVIEV	V
Cross Section		Regular Secti	on -2 Lan	es
Material above Crown		Soil		
Material in Face		Soil		
max. Overburden	[m]	11	Н	
Surface Load	[kN/m2]	60	[-]	

Soil Properties			
dry weight	[kN/m3]	17	γdry
wet weight	[kN/m3]	18	γwet
angle of friction	[°]	25	Φ
cohesion	[kPa]	2	С
Coeff. Lateral press.	[-]	0.58	Ko
Coeff. Lateral press.	[-]	0.58	Ko

Cross Section				
equ. Radius	[m]	3.94	R0	circular Cross Section assumed
Height of Face	[m]	5.5	hf	Top Heading only
ass. Wedge Width	[m]	8.9	bf	

Vertical Loading acc. to Terzaghi

h0	[m]	11.2
	weigh	t, dry
Pe1	[kPa]	199.4
h0	[m]	11.1
	weigh	t, wet
B1	[m]	7.2

load to be taken by liner			
B1	[m]	7.2	
Pe1	[kPa]	199.4	
Plin	[kN/m]	1435.5	
d_lin	[m]	0.3	
s_lin	[MPa]	4.8	

 $\begin{aligned} \mathbf{h}_{0} &= \mathbf{B}_{1} \left[1 - \mathbf{C}/\mathbf{B}_{1} \gamma \right] \left\{ 1 - \exp\left(-\mathbf{k}_{0} \tan\left(\phi\right) \mathbf{H}/\mathbf{B}_{1} \right) \right] / \mathbf{K}_{0} \tan\left(\phi\right) + \mathbf{P}_{0} \exp\left\{ -\mathbf{K}_{0} \tan\left(\phi\right) \mathbf{H}/\mathbf{B}_{1} \right\} / \gamma \end{aligned}$

Face Stability Check

Surface Load	P0	kN/m2	60
Overburden	Н	[m]	11
Diametre	D	[m]	7.9
Angle of friction	¢	[°]	25
Cohesion	С	HWR	2
weight, wet	γ	MWR	18
Coefficient of lateral pressure	K0	[-]	0.6
Pull length	lp	[m]	1.0
height of face	hf	[m]	5.5
wedge width	bf	[m]	8.9

Angle of failure at face	β	[Deg]	47.5	57.5
wedge length	lf	[Deg]	5.0	3.5
Wedge length + 2 pulls	b	[m]	7.0	5.5
one maximum dia	а	[m]	7.9	7.9
equ. Radius Silo (rectangular)	b1_equ	[m]	3.7	3.2

Earth Pressure (Silo)

equivalent height	h0	[m]	8.8	8.3
vertical stress (pressure)	σv3d	[kN/m2]	159.2	149.1

Wedge

Weight of the wedge	G1	[kN]	2220.3	1543.6
Vertical Force / Weight silo	G2	[kN]	7139.3	4648.7
Total Weight	G	[kN]	9359.6	6192.3
Length of Sliding plane	ls	[m]	7.5	6.5
Area of Sliding plane	As	[m2]	66.4	58.0
Resistance	R	[kN]	3081.4	1667.5
Stress	1.1	[kN]	6900.6	5222.5
Factor of Safety w/o support	η	[-]	0.4	0.3
required Factor of safety	erf η	[-]	1.15	1.15
Required Support Action	Areq	[kN]	4762.0	4662.0

Face Bolting

allowable bolt force	Azul	[kN]	560	560
required number of bolts	n	[-]	9	9

ANNEXURE - 7 DRAWINGS

Bruhat Bengaluru Mahanagara Palike

Bruhat Bangalore Mahanagara Palike

EXCAVATION AND SUPPORT QUANTITIES/m						
Round Length	Avg. 2.5m					
Excavation Theoretical Excavation Volume	46.32 m³					
Theoretical Excavation Circumference(excluding invert)	17.06 m					
Sprayed Concrete 100mm Thick - SFRS	1.79 m²					
Spot Bolting,Swellex Bolt,4M Long,Fb MIN = 200kN	spot bolting as required					
Round Length	Avg. 5.0 m					
Excavation Theoretical Excavation Volume	40.09 m³					
Theoretical Excavation Circumference (excluding invert)	17.78 m					
Support Sprayed Concrete 100mm Thick - SFRS	0.76 m²					

51	СA	۱L	E	1 :	7	5
					1	

					2.5m	0	2.5m	5.0m	7.5m	
CONSULTAN	T: Rodic	RODIC CONSULTANTS PVT. LTD. 1, JAI SINGH MARG (FIRST FLOOR), YMCA CULTURAL CENTRE BUILDING NEW DELHI - 110001 (INDIA)				DRAFT PROJECT REPORT			Project	"Const work of from H
				Fluidyn India	Designed:	GCI				
GC	GEOCONSULT INDIA PRIVATE I 04B106 WeWork, Platina Tower MG	LIMITED Road Near	IMITED Road Near / #15, 4 th Floor, Ou	#15, 4 th Floor, Outer Ring Road	Drawn:	GCI	Scale :- 1:75	Drawing Title	NATM TUN	
GROUP	Sikanderpur Metro Station Sector 28,	Gurugram JP Nagar 6th Phase Bengaluru, Karnataka 560078 India	JP Nagar 6th Phase Bengaluru, Karnataka 560078 India	Checked:	GCI			Duousia a Nie	50/10/0	
Haryana INDIA				Approved:	GCI	Sheet size: A1			RC/1640/	

SPRAYED CONCRETE-SRFS 100MM THICKNESS

SPOT BOLTING, SWELLEX BOLT, 4M LONG,FB MIN = 200kN

(PRELIMINARY)

sultancy services for preparation of DPR for the of Construction of Underground Vehicular Tunnel Hebbal Esteem mall junction to Silk Board KSRP junction"

NEL 2-LINE REGULAR CROSS SECTION SUPPORT CLASS-I

)/HO/HBT/TU/DWG/NT/SUP/406/R0

Original Drawing Size A1

INCLUDED, WHEREA	S IN INVERT NO CONSTRUTION	TOLERANCE IS INCLUDED
------------------	----------------------------	-----------------------

REVISION	DATE	AMENDMENT \ ISSUE DESCRIPTION	CLIENT
R0	11.09.24	PRELIMINARY	

GOVERNMENT OF KARNATAKA

GOVERNMENT OF KARANATAKA Bruhat Bangalore Mahanagara Palike

Bruhat Bengaluru Mahanagara Palike

EXCAVATION AND SUPPORT QUANTITIES/m						
		Round Length				
U)	Excavation	Theoretical Excavation Volume				
EADIN		Theoretical Excavation Circumference(excluding invert)				
ТОР Н	Support	Sprayed Concrete 200mm Thick - SFRS				
		Rock Bolts, SN 25mm Dia. , Fy. Min. 200kN, L=4m.				
		LATTICE GIRDER 90/20/25				
		Face sealing SFRS, 100mm thk (min. section)				
		Round Length				
	Excavation	Theoretical Excavation Volume				
NVERT		Theoretical Excavation Circumference (excluding invert)				
ENCH/I	Support	Sprayed Concrete 200mm Thick - SFRS				
	oupport	Rock Bolts, SN 25mm Dia. , Fy. Min. 200kN, L=4m.				
		Lattice Girder 90/20/25				

SI	C A	٩L	E	1	:	7	5
		~				~	

					2.5m	0	2.5m	5.0m	7.5m	
CONSULTAN	T: Rodic	RODIO 1, JAI SI CULTUR NEW DE	RODIC CONSULTANTS PVT. LTD. 1, JAI SINGH MARG (FIRST FLOOR), YMCA CULTURAL CENTRE BUILDING NEW DELHI - 110001 (INDIA)			DRAFT PROJECT REPORT			Project	"Con work from
				Fluidyn India	Designed:	GCI				
GC	04B106 WeWork, Platir	ha PRIVATE LIMITED na Tower MG Road Near	MG Road Near Huidum, JP Nagar 6th Phase Bengaluru	#15, 4 ¹¹ Floor, Outer Ring Road JP Nagar 6th Phase Bengaluru,	Drawn:	GCI				
Sikanderpur Metro Station Sector 28, Gurugram Harvana INDIA			Checked:	GCI			Drawing No	PC/16/		
	Tharyan				Approved:	GCI	Sheet size: A1			

Avg. 1.5m	
47.28 m³	
17.23 m	
3.38 m²	
5.66 no.	
16.92 m	
47.28 m²	
Avg. 3 m	
42.90 m³	
18.38 m	
1.60 m²	
2.0 no.	
8.09 m	

(PRELIMINARY)

onsultancy services for preparation of DPR for the rk of Construction of Underground Vehicular Tunnel Hebbal Esteem mall junction to Silk Board KSRP junction"

UNNEL 2-LINE REGULAR CROSS SECTION SUPPORT CLASS-II

640/HO/HBT/TU/DWG/NT/SUP/407/R0

- 3.. ALL QUANTITIES GIVEN ARE BASED ON AVERAGE ROUND LENGTHS (MEAN VALUE OF RANGE OF ROUND LENGTH GIVEN IN THE RESPECTIVE TABLES). 4. MAX. DISTANCE BETWEEN TOP HEADING AND BENCH/INVERT CAN BE ALTERED
- BY THE ENGINEER-IN-CHARGE ACCORDING TO ENCOUNTERED GEOLOGICAL CONDITIONS. 5. DEFORMATION ALLOWANCE + CONSTRUCTION TOLERANCE OF 150MM IS CONSIDERED AND
- INCLUDED, WHEREAS IN INVERT NO CONSTRUTION TOLERANCE IS INCLUDED

.*	CLIENT	AMENDMENT \ ISSUE DESCRIPTION	/ISION
GOVE		PRELIMINARY	R0
] 🧏		
Summer Street Stre	1		
GOVE	1		
Bruhat Ba	1		
	1		
mananagara ranke			

RNMENT OF KARNATAKA

NMENT OF KARANATAKA ngalore Mahanagara Palike

					SCALE 1	CALE 1 : 75				
					2.5m	0	2.5m	5.0m	7.5m	
CONSULTAN	NSULTANT: RODIC CONSULTANTS PVT. LTD. 1, JAI SINGH MARG (FIRST FLOOR), YMCA CULTURAL CENTRE BUILDING NEW DELHI - 110001 (INDIA)			DRAFT F	PROJECT REPORT		Project	"Con worl from		
				Fluidyn India	Designed:	GCI	Socia + 1.75			
GROUP 04	GEOCONSULT INDIA PRIVATE 04B106 WeWork, Platina Tower MG	INDIA PRIVATE LIMITED Platina Tower MG Road Near	#15, 4 th Floor, Outer Ring Road	Drawn:	GCI		Scale :- 1:75			
	Sikanderpur Metro Station Sector 28	Gurugram	rugram JP Nagar 6th Phase Bengaluru, Karnataka 560078 India	Checked:	GCI					
	Haryana INDIA				Approved:	GCI	Sheet size: A1		Drawing No.	RC/16

ADING	BENCH	INVE
$[\neg \neg $		
-		
		,
······································		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{tabular}{cccccccccccccccccccccccccccccccccccc$	╞╴╶ଡ଼╴╞	
	~⁄/	
TS ARRANGEMENT Fy. Min. 200kN, L=6m.	ла.,	

LATTICE GIRDER 130/25/32

PORT QUANTITIES/m	
	Avg. 1.0 m
ume (Including temp invert)	48.57 m³
cumference(Including temp invert)	17.54 m
300mm THK	5.53 m²
200mm THK (temp inv)	2.29 m²
Fy. Min. 200kN, L=6m.	6.0 no.
	16.93 m
3m Overlap	0.5 no.
peroof 12m Long, 4m Overlap @300mm C/C	5.1 no.
m thk (min. section)	48.57 m²
‹N, 9m long With 3 m Overlap	1.5 no.
	Avg. 2.0 m
lume	28.28 m³
cumference (side walls only)	26.69 m
300mm THK	1.79 m²
Fy. Min. 200kN, L=6m.	6.0 no.
	5.98 m
	Avg. 4.0 m
lume	17.96 m ³
cumference (Invert only)	12.58 m
300mm THK	3.63 m²
/32	12.14 m

(PRELIMINARY)

onsultancy services for preparation of DPR for the rk of Construction of Underground Vehicular Tunnel n Hebbal Esteem mall junction to Silk Board KSRP junction"

TUNNEL 2-LINE REGULAR CROSS SECTION SUPPORT CLASS-III

640/HO/HBT/TU/DWG/NT/SUP/408/R0

RT

REVISION	DATE	AMENDMENT \ ISSUE DESCRIPTION	CLIENT
R0	11.09.24	PRELIMINARY	

Bruhat Bengaluru

GOVERNMENT OF KARNATAKA

GOVERNMENT OF KARANATAKA Bruhat Bangalore Mahanagara Palike

EXCAVATION AND SUPPORT QUANTITIES/m							
TOP HEADING	Excavation	Round Length	Avg. 1.5 m				
		Theoretical Excavation Volume	39.53 m³				
		Theoretical Excavation Circumference(excluding invert)	15.96 m				
		Sprayed Concrete 200mm Thick-SFRS	3.13 m²				
	Support	ROCK BOLT SN Ø 25MM,Fy MIN 200kN L=4M	5 no.				
		FACE SEALING SPRAYED CONCRETE- 100mm THK.	39.53 m²				
		LG 90/20/25	15.65 m.				
BENCH		Round Length	Avg. 3 m				
	Excavation	Theoretical Excavation Volume	42.90 m³				
		Theoretical Excavation Circumference (excluding invert)	9.83 m				
	Support	Sprayed Concrete 200mm Thick - SFRS	0.44 m²				
		LG 90/20/25	2.24 m.				

SI	C A	۹L	. E	1	:	7	5

			١١٦. ٢	111	U	2.311	0.011	ווכ.ז	
CONSULTANT:	Rodic	RODIC CONSULTANTS PVT. LTD. 1, JAI SINGH MARG (FIRST FLOOR), YMCA CULTURAL CENTRE BUILDING NEW DELHI - 110001 (INDIA)		DRAFT PROJECT REPORT				Project	"Consultancy services for preparation of DP work of Construction of Underground Vehic from Hebbal Esteem mall junction to Silk B
GEOCONSULT INDIA PRIVATE LIMITE 04B106 WeWork, Platina Tower MG Road N Sikanderpur Metro Station Sector 28, Gurugr Haryana INDIA		Fluidyn India G Road Near 8, Gurugram Fluidyn India #15, 4 th Floor, Outer Ring Road JP Nagar 6th Phase Bengaluru, Karnataka 560078 India	idyn India De or, Outer Ring Road Dra h Phase Bengaluru, Ch	esigned: C rawn: C	GCI GCI	Scale :- 1:75 Sheet size: A1	Drawing Title	VEHICULAR CROSS PASSAGE SUPPORT CLASS II SINGLE LAN	
			60078 India Ap	pproved: C	GCI		Drawing No.	RC/1640/HO/HBT/TU/DWG/VCP/SUP/409/R0	

nsultancy services for preparation of DPR for the c of Construction of Underground Vehicular Tunnel Hebbal Esteem mall junction to Silk Board KSRP junction"

(PRELIMINARY)

		 SF L/	PRAYED C ATTICE GIF	ONCRETE-S RDER 90/20/2	FRS 200r 25
	≠/		^^_ > >	י 	
, , ,	-¢-	-ф-[> >	} } }	
	-¢-		>	} }	
	4)		ROUND LENGTH		

RODIC CONSULTANTS PRIVATE LIMITED

1st floor, Sarojini House 6, Bhagwan Das Road, Mandi House, New Delhi - 110001(INDIA) e-mail: <u>contact@rodicconsultants.com</u>