

Bruhath Bengaluru Mahanagara Palike

Narashima Raja Square Bengaluru

Remodeling of Primary & Secondary Storm Water Drains in Bengaluru Under JNNURM Scheme

Koramangala Valley

Feasibility & Detailed Project Report

Volume – I

December 2006

STUP Consultants P. Limited

FEASIBILITY & DETAILED PROJECT REPORT

TABLE OF CONTENTS

SL. NO.	DESCRIPTION	PAGE N	0.
EXECUTIV	E SUMMARY		8
Chapter 1	INTRODUCTION AND BACKGROUND		
1.1	General		17
1.2	Project background		17
1.3	Objective of the Project		19
1.4	Report Objective		19
1.5	Scope of Assignment		21
1.6	Phases of the Programme		21
1.7	Preamble to Inception Report		22
Chapter 2	ASSESSMENT OF EXISTING STORM WATER DRAINAGE SYSTEM		
2.1	Introduction		24
2.2	Description of Catchments		24
2.3	Description of Koramangala valley		29
2.4	Reconnaissance Survey		32
2.5	Report on Field Survey of Drains in Koramangala Valley		32
2.6	Details of Existing Storm Water Drains in Koramangala Valley		34
2.6.1	Observation during Site investigations of K- Main Valley Primary Storm D	Drain	34
2.6.2	Observation during Site investigations of K- Main Valley Secondary Drain	าร	50
2.6.3	Observation during Site investigations of Tavarekere Valley Primary Storr	n Drain	63
2.6.4	Observation during Site investigations of Tavarekere Valley Secondary D	rains	70
2.7	Condition Survey of Cross Drains in Koramangala Valley		80
2.8	Observation during Site investigations of Low lying Areas in Koramangala	a Valley	80
2.9	Existing Operation and Maintenance Practice.		90
2.10	Quantity and Quality of Sewage		91
Chapter 3	STORM WATER DRAINAGE DESIGN AND ANALYSIS		
3.1	Introduction		93
3.2	Design Criteria 93		

TABLE OF CONTENTS

SL. NO.	DESCRIPTION	PAGE NO.
3.2.1	Planning Horizon	93
3.2.2	Design Period	94
3.2.3	Physical Parameters of Catchment	94
3.2.4	Process Parameters	95
3.2.5	Meteorological Data	95
3.2.5.1	Rainfall analysis Using CPHEEO Method	95
3.2.5.2	Rainfall analysis Using Ranking Method	96
3.2.5.3	Rainfall analysis Using Gumbels Distribution Method	97
3.2.6	Structural Design Parameters	98
3.3	Catchment Analysis	101
3.4	Design Procedure	111
3.4.1	General Introduction	111
3.4.2	Storm Water Runoff	112
3.4.2.1	Rational Method	112
3.4.3	Storm Frequency	113
3.4.4	Intensity of Precipitation	114
3.4.5	Time of Concentration	115
3.4.6	Coefficient of Runoff	115
3.4.7	Tributary Area	116
3.4.8	Duration of Storm	116
3.4.9	Computation of Runoff Coefficients	117
3.5	Hydraulic of Storm Drains	118
3.5.1	Rational Method	118
3.5.2	Rainfall	119
3.5.3	Runoff Coefficients	121
3.6	Application of Rational Method	124
3.7	Processing of Rainfall Data	125
3.8	Computation of Storm Water Runoff	135

Chapter 4 REVIEW OF ASSESSMENT AND RECOMMENDATIONS ON EXISTING STORM WATER DRAINAGE SYSTEM

4.1	Introduction	140
4.2	Report on Adequacy Analysis	141

TABLE OF CONTENTS

DESCRIPTION	PAGE NO.
Strategic Actions And Recommendations	149
Mitigative Measures for Low Lying areas	165
Best Management Practices	173
 Adequacy Analysis Results For Koramangala Main Valley 	176
 Adequacy Analysis Results For Tavarekere Valley 	284
•Adequacy Analysis Results For Koramangala Main Valley Culverts	428
 Adequacy Analysis Results For Tavarekere Valley Culvert 	430
	Strategic Actions And Recommendations Mitigative Measures for Low Lying areas Best Management Practices •Adequacy Analysis Results For Koramangala Main Valley •Adequacy Analysis Results For Tavarekere Valley •Adequacy Analysis Results For Koramangala Main Valley Culverts

Chapter 5 ENVIRONMENTAL AND SOCIAL IMPACT

5.1	Introduction	435
5.2	Environmental Conditions	435
5.2.1	Relationships between Solid Waste And Drainage System	438
5.2.2	Conflicts between sewers and Drains	439
5.2.3	Impacts of Poor Storm Water Drainage system	440
5.3	Environmental Management Plan	441
5.4	Social Impacts	444

Chapter 6 COST ESTIMATION

6.1	Introduction	447
6.2	Costs	293
6.3	Cost Estimate	448
6.4	Work Programme for Koramangala Valley	316
6.5	Recurrent Cost	492

Chapter 7 TECHNO-ECONOMIC ANALYSIS

7.1	Introduction	292
7.2	Out Come of the Valley Projects	93
7.3	Stake Holders of the project	6
7.4	Stake Holder Requirements ,Outputs and Benefits	316
7.5	Project Objectives	
7.6	Variables and Measurements	
7.7	Abstract of Cost	
7.8	Ward and Demographics of Koramangala Valley	

TABLE OF CONTENTS

SL. NO.	DESCRIPTION	PAGE NO.
Chapter 8	SUSTAINABILITY EVALUATION	
8.1	Legal Assessment	292
8.2	Establishment of Institutional Frame Work	93
8.3	Rationale for a Project Management Unit	6
8.4	Education and Awareness Programme	316
8.5	Objectives of the Intervention	
8.6	Target Group(s) with location Specific Information	
8.7	Duration of the Intervention	
8.8	Justification For Undertaking the Proposed Intervention	12
8.9	Approach & Methodology	12
8.10	Description of the Target Area, Target Group (s) Along with thei	r Current
	Socioeconomic Status.	12
8.11	Relevance of the Intervention to the Work Already Going on	12
8.12	Utilisation of the Expected out come From the Intervention	
	and its Beneficiaries	12
8.13	Risk Assessment	15
8.14	Risk Management	16

Chapter 9 FINANCIAL AND OPERATING PLAN

Chapter10 IMPLEMENTATION PLAN

10.1	Introduction	363
10.2	Stages Of Project	364
10.3	Implementation Programme	373

Remodelling of Primary and Secondary Storm Water Drains In Bangalore City

LIST OF TABLES FOR KORAMANGALA VALLEY

SI. No.	Table	No. Descr	ption	Page No.	
1.	2.1	Summary of Storm W	ater Drainage Catchmer	nt 28	
2.	2.2	Drain Details of Kora	mangala Valley	30	
3.	2.3	List of Critical Low Ly	ing Areas In Koramanga	la Valley 81	
4.	3.1	Koramangala Main Va	alley Micro Catchment C	ode 103	3
5.	3.2	Koramangala Main Va	alley Flow Region Code	104	1
6.	3.3	Tavarekere Valley Mi	cro Catchment Code	105	5
7.	3.4	Tavarekere Valley Flo	w Region Code	106	3
8.	3.5	Koramangala Main Va	alley Land Cover Charac	teristics 109)
9.	3.6	Tavarekere Valley La	nd Cover Characteristics	s 109)
10.	3.7	Table of CPHEEO Ma	anuel – Runoff Coefficier	nts 117	7
11.	3.8	Analysis of Frequency	y of Storms	126	3
12.	3.9	Time Intensity Values	of Storms	127	7
13.	3.10	Intensity V/s Duration		134	1
14.	4.1	Abstract of Adequacy	Analysis For K Main Va	lley 177	7
15.	4.2	Abstract of Adequacy	Analysis For Tavareker	e Valley 285	5
16.	4.3	Abstract of Adequacy – For Koramangala M	Analysis Results of Culv lain Valley	verts 429)
17.	4.4	Abstract of Adequacy – For Tavarekere Val	Analysis Results of Culvey	verts 431	l
18.	4.5	List of Bridges Consid in Koramangala Valle	lered for Reconstruction y	434	1
19	4.6	List of Culverts Consi in Koramangala Valle	dered for Reconstructior y	ו 434-1	

Remodelling of Primary and Secondary Storm Water Drains In Bangalore City

Feasibility Report –Koramangala Valley

LIST OF TABLES (Contd.)

SI. No.	Figur	e No.	Description	Page No.
20.	5.1		ons Identified for Construction of nds in Koramangala Valley	443
21	6.1	Details of Pri Koramangala	mary and Secondary Storm Drains of a Main Valley	450
22.	6.2		lverts / Bridges Constructed across Pri ry Storm Drains in Koramangala Main	
23.	6.3	Details of Net Main Valley	w Drains Proposed in Koramangala	451
24.	6.4		mary and Secondary Storm Drains of Valley Considered for Remodelling	451
25.	6.5	Details ofNev Koramangala	v drains proposed for construction in Valley	452
26.	6.6		imary and Secondary Storm Drains of /alley Considered for Remodelling in Valley	452
27.	6.7		lverts / Bridges Constructed across Pri ry Storm Drains in Tavarekere Valley	mary 453
29		Details of Net Taverekere v	w Drains Proposed for construction in alley	453
30.	6.9		or Improving the Carrying Capacity of F ry Storm Drain in Koramangala Main \	
31	6.10		Providing Rehabilitation to Existing n Drain in Koramangala Main Valley	461
32.	6.11		Improving the Carrying Capacity of torm Drains in Koramangala Main Valle	ey 464
33.	6.12		Providing Rehabilitation to Existing torm Drains in Koramangala Main Valle	ey 468
34.	6.13		Improving the Carrying Capacity of torm Drain in Koramangala Valley	471

35.	6.14	Schedule for Improving the Carrying Capacity of Secondary Storm Drains in Tavarekere Valley	473
36.	6.15	Schedule for Providing Rehabilitation to Existing Secondary Storm Drains in Tavarekere Valley	474
37.	6.16	Schedule for Providing Rehabilitation to Existing Primary Storm Drain in Tavarekere Valley	475
38.	6.17	Abstract of Cost For Bridges / Culverts Considered for Remodelling in Koramangala Valley	488
39.	6.18	Abstract of Cost For Improving the Existing Tertiary Drains in Koramangala Valley	490
40.	6.19	Abstract of Cost For Operational And Maintenance of Storm Drainage System in Koramangala Valley	495

Remodelling of Primary and Secondary Storm Water Drains In Bangalore City

LIST OF FIGURES FOR KORAMANGALA VALLEY

SI. No.	Figure No.	Description Page No.	
1.	2.1	Study Area Boundary	25
2.	2.2	Major and Minor Valleys of Bangalore Storm Water Drains	31
4.	2.3	Koramangala Valley Primary and Secondary Storm Water Drains	32
5.	2.4	Koramangala Valley - Low Lying Areas	82
6.	3.1	Koramangala Valley – Sub Catchments	106
7.	3.2	Tavarekere Valley – Sub Catchments	107
8.	3.3	Koramangala Valley – Land Use Map	110
10.	3.4	Intensity V/s Duration - One Year Storms	128
11.	3.5	Intensity V/s Duration - Two Year Storms	129
12.	3.6	Intensity V/s Duration - Five Year Storms	130
13.	3.7	Intensity V/s Duration - Ten Year Storms	131
14.	3.8	Intensity V/s Duration - Twenty Year Storms	132
15.	3.9	Duration V/s Rainfall Intensity	134
16.	3.10	Duration V/s Runoff Coefficients	137
17	6.1	Proposed RCC Drains in Koramangala Valley	449
18	6.2	Strip plan showing locations for storm Drain Improvements in Koramangala Valley	496
19	10.1	Out line Methodology flow chart for Phase-1 -Feasibility Report	
20	10.2	Out line Methodology flow chart for Phase-11 -Detailed Engineering	

LIST OF FIGURES FOR KORAMANGALA VALLEY

SI. No.	Figure No.	Description	Page No.
21	10.3	Activity Bar Chart	
22	10.4	Package Details	

EXECUTIVE SUMMARY

INTRODUCTION

The total area of Bangalore city is approximately 225 Sq.m. and is divided by 4 major valleys namely Chellaghatta, Hebbal, Koramangala and Vrishabhavathy valley with total length of primary. and secondary drains more than 230 Km. Chellagatta main valley originates from palace ground in Jayamahal and join Bellander lake. Hebbal main valley starts from Mathikere and joins Hebbal Lake. Koramangala main valley originates from Subhashnagar and joins Bellandur lake and Vrishabhavathy main valley originates from Sankey tank and joins Vrishabhavathy valley near Mysore road.

Due to rapid urbanization, the rate of growth of population in Bangalore has been explosive during the last two decades. Bangalore being a chosen destination for software, Biotech and other industrial entrepreneurs has further escalated the population rise. This has obviously caused additional strain on the already overloaded city infrastructure. The large scale construction of Office premises, residential accommodation and ether similar construction, to meet the demands of the rising population has resulted in :

- i) Increased ground coverage and pavements
- Developments inside the buffer storage areas and tanks'
- iii) Encroachments into the storm water drain
- iv) Uncontrolled discharge of sewage and effluents inside the Storm water drain
- v.) Constructions inside the drain to facilitate running of other utilities.

Bangalore Mahanagara Palike, agency responsible for the maintenance of the city's infrastructure has taken up the project of remodeling the entire storm water drain to improve the efficiency of the storm water drainage system and entrusted the work to M/s. STUP Consultants P. Limited.

The scope of work includes

I) Preparation of :

- a) Feasibility Report
- b) Detailed Project Report
- c) Construction Management for 4 valleys:
 - a) Vrishabhavathy Valley
 - b) Koramangala Valley
 - c) Chellaghatta
 - d) Hebbal

II) Detailed scope of services

- Detailed topographical and geo-technical survey
- Assessment of quantity and quality of drainage discharge
- Analysis of the existing system
- Prevention of sewerage entering drains (to the possible extent)
- Hydraulic and structural designs and drawings
- Cost estimation and Bill of Quantities
- Technical specifications
- Cost benefit analysis
- Bid documents
- Slicing and Packing (Phasing for Implementation)
- Assistance inviting and evaluating Bids
- Project management and Quality assurance
- Training of BMP staff

While Remodeling proposals on the entire Storm water drain system is in progress, the report on Koramangala valley remodeling is being submitted as a first part in 2 Volumes namely:

- Volume 1 Detailed Project Report
- Volume 2 Drain Alignment Plan, Longitudinal Section & General arrangement Drawings.

OUT COME OF THE PROJECT:

Sustainable ecosystem for lakes, river beds and other water bodies around river valleys, prevention and management of floods in low-lying areas and liveable environ for citizens and residents.

WORK METHODOLOGY

To asses the existing condition of the drain a detailed topographical survey has been carried out using total stations in which the alignment of the drain, length of the drain, adjoining buildings, culverts *I* bridges, cross section of the drain etc are identified.

Condition survey of the drain and bridges were also carried out in which the bed condition of the drain, walls, level of silting in the drains, obstructions, sewage entry points to the drain, pipe crossings, manholes etc., were also identified and listed in the formats. The condition of bridges and culverts have also been assessed. Various low lying areas were identified during reconnaissance survey which are prone to flooding and the bottle necks and reason causing flooding were identified.

It is an established fact that the high intensity, high volume rainfall follows laws of probability which can be established for a place like Bangalore where rainfall data for over 25 - 30 years is available. These mathematical laws generally called as "extreme value distributions" enable one to correlate the intensity of rainfall and the chances (probability) of that rainfall taking place within a given time frame (1 hour, 12 hours, 24 hours, etc.) when such precipitation takes place, the amount of water. that will flow from various parts of the catchments area to the drains can be calculated based on knowledge of the type and characteristics of terrain (in terms of its absorption and runoff) type of drains, sectional areas of drains and their slopes, etc.

This method, (Called Rational Method) being logical and incorporating various actual physical characteristics is considered to be a powerful method for predicting the maximum expected floods. However, to evaluate and fix various physical parameters of

catchment areas (i.e properties) and to fit rainfall data is a difficult task. Even when carried out, it needs to be confirmed by observation of actual water discharge against the calculated discharge., A set of catchment parameters need to be consistently chosen and adjusted in prediction model whose predictions shall match with the actual observations of flood. This stage is termed as the "Calibration of the System".

The rational method is a very powerful method for design of a "Greenfield" project (i.e new towns, new development areas, etc.). However, this method is not adequate on its own for studying the existing systems which have been developed over a period of time without having any systematic design philosophy behind its design.

Therefore, as a first step in improving the existing system it is necessary to take following steps:

- a) Repair and rehabilitation of damaged portion of existing drains.
- b) Cleaning and clearing of waterway by removal of debris, artificial constrictions, blockages, etc.
- c) Making the entire drain system internally consistent over its full length.

Once the above is achieved, the probabilistic predictions of discharge, velocity and capacity can be compared with those of actually observed floods. This will enable one to establish correct mathematical model which is then used for "optimizing the design for other portions of drainage channels (i.e. primary, secondary and tertiary drains) and make the whole system internally consistent. and cost effective.

At present, the mathematic model for rainfall in Bangalore has been established based on rainfall data of part several years. Also, the parameters of catchment have been evaluated and the first order prediction model is prepared.

This model has been used to make first predictions of the expected flood. This is found to yield higher flood levels than those actually observed and will need second stage corrections. This can be effectively done after completing three stages of repair/rehabilitation me!1tioned above. Meanwhile, these first order results, have been used as a guideline in preparing proposals of widening / additional capacity of drains at local portions in such a way as to make the system internally consistent.

DESIGN PHILOSOPHY

The data required for adequacy analysis of drain like rainfall data, topography and land use from satellite imagery are collected. The detailed technical and hydraulic analysis have been carried out to assess the hydraulic capacity of the drain and bridges. Various statistical analysis were studied for rainfall and the method which is best suited to the site condition, i.e. CPHEEO method has been selected and analysed.

RECOMMENDATIONS'

To improve the section of the drain and to minimize the flooding, various drain improvement methods are suggested are :

- 1 Provision of gratings for closed drain for allowing water to the drain with openings for cleaning the drain.
- 2 Plugging of all openings to the drain made for draining ground water to the main drain where the drain wall tap is higher than the ground level/road level and construct side drain leading off storm water to the down stream end.
- 3 Provision of pointing to inside of existing stone masonry drain wall.
- 4 Provision of bed to drain to improve the flow
- 5 Provision of bed and wall for drain wherever they do not exist to improve the drain hydraulics.
- 6 Removal and reconstruction of drain wall wherever the drain wall is in dilapidated conditions.

- 7 Provision of embankment in the pitching and lined bed for drain where enough land is available.
- 8 Provision of Bypass drains to reduce the load on the existing drain.
- 9 Provision of cut off drain around the low lying area to prevent outside water entering the low lying area and construction of sump for pumping out water at a location closer to the main drains (downstream end) and easily accessible to reach the truck mounted pump.
- 10 The improvement shall be taken up from the; down stream of the valley. If remodeling is commenced from upstream side, situation at the downstream end would further get aggravated.
- 11 Increase the drain wall height to increase the carrying capacity of the drain wherever required. Provide parallel drain adjacent to the raised drain wall to dispose the ground water to down stream of drain.
- 12 All obstructions like bridges/culverts, utility lines, manholes, etc. shall be removed and rebuilt wherever required.
- 13 All silt/debris from the drain shall be removed.
- 14 Providing drain improvement to Koramanagala area in 2 phases like:
 - a) Phase 1 improvement to existing drain
 - b) Phase 2 construction of bye pass drain of adequate capacity as approved
- 15 Providing Kutcha drain from Koramangala to Bellandur lake
- 16 Set-up a vigilance squad to prevent debris dumping, encroaching of drain, local obstruction, such as, pipe crossing, construction inside the drain, any construction other than required for storm water in drainage.

17 Encourage rain water harvesting in institutions, public parks, open grounds, etc., like Mico factory, National Dairy Research Institute, National Games village, St. John's Hospital, Defense land, etc.

ENVIRONMENTAL AND SOCIAL IMPACTS

Storm drains carrying sewage and solid wastes are causing environmental hazards such as :

- 1. Pollution of ground water source.
- 2. Odour problem
- 3. Mosquito menace
- 4. Unhygienic conditions are causing health hazards

Remodeling of Primary and Secondary Storm Water Drains in Bangalore C

Koramangala Valley. - Project Report - Executive Summary

The inadequate size of the drains causes flooding of the areas which includes low lying areas such as, Journalist colony, Sudham Nagar, Sampangi Ram Nagar, Shanthinagar, Wilson Garden, Laxman rao slum, Ejipura, S.T.Bed, Kormangala, LIC Colony, Bismilla Colony, BTM Dollars Colony causing damage to properties, affecting social life of local residents.

Therefore, to minimize flooding, proposals for immediate and long term are prepared for Koramangala valley.

Cost Estimation:

For implementation of the various recommendations a detailed cost estimation has been prepared, and is shown as Below:

For effective functioning of any system, requires maintenance. The operation and maintenance requirement have been identified and costing is indicated.

ABSTRACT OF COST FOR REMODELING OF PRIMARY & SECONDARY STORM WATER DRAINS IN KORAMANGALA VALLEY

SI.No.	Description	Amount	
51.NO.	Description	(Rs. In Lakhs)	
	Cost for Remodeling of Primary & Secondary Storm Water		
1	Drains, Construction of New Drains near low lying areas,	10,303.32	
	Formation of Service Roads etc.,		
2	Cost for Remodeling of Bridges / Culverts constructed	380.12	
Z	across Primary & Secondary Storm Water Drains.	560.12	
3	Cost for shifting utility lines, footpath improvement works, barricading, traffic diversion, strengthening of diversion routes etc.	534.17	
4	Construction of Detention Ponds / Retarding Basins	150.00	
5	Construction of Wells with pumping arrangement in low lying areas	300.00	
6	Procurement of desilting machine	0.00	
7	Miscellaneous and rounding off	0.02	
8	Advisory, Project Management & Establishment Charges	175.01	
0	(1.5 % of Item 1 to 7)	175.01	
	Sub Total	11,842.65	
	Phase – I Construction of new drain from Koramangala 80		
9	ft. road via. Ejipura main road, ASC centre, Defence dairy	3,129.06	
	farm land upto Bellandur Tank		
10	Phase – II Construction of new drain along Koramangala 80	3,237.96	
10	ft. road upto Jakkasandra layout	J ₁ 237.90	
	Total (Including Phase – I Proposal)	14,971.71	
	Total (Including Phase – II Proposal)	15,080.61	
11	Annual Operation & Maintenance Cost	175.01	
11	(1.5 % of Item 1 to 7)	175.01	

Koramangala Valley - Executive Summary

Funding Pattern as Per JNNURM Guidelines

Estimated Capital Costs: (Cost Rs. in Crores)

Name of	Capital	Years					
Component	Cost as per DPR	2006-07	2007-08	2008-09	2009-10	2010-11	2011-12
Remodeling of S	Remodeling of Storm Water Drain Network in Koramangala Valley						
Koramangala Valley	118.43	47.37	47.37	23.69	-	-	-
Total	118.43	47.37	47.37	23.69	0.00	0.00	0.00

Funding pattern for Remodeling of Storm Water Drains in Koramangala Valley (Rs. in Crores)

Funding Pattern	Total	2006-07	2007-08	2008-09
GOI Grant 35%	41.45	16.58	16.58	8.29
GOK Grant 15 %	17.76	7.11	7.11	3.55
BMP financing	59.22	23.69	23.69	11.84
Total	118.43	47.37	47.37	23.69

Note: The funding pattern proposed is based on the JNNURM guidelines.

CHAPTER – 1

INTRODUCTION AND BACKGROUND

1.1 GENERAL:

Bangalore, the capital of Karnataka, is one of the fastest growing cities in India with a current estimated population of 5.8 million people, spread over an area of about 225 Sq.km. and is situated at an altitude of about 894 m. above MSL.

Bangalore was once well known for its open parkland environment with significant number of large traditional tanks with a good network of waterways and thick vegetative cover. Rapid increase in population, industrialization and migration of people from rural Karnataka and rest of the country in a relatively short span of time has put more pressure on the utilities and services, which are already loaded beyond their capacities. Storm water drains are one of the most affected services in the city. The problem is aggravated by uncontrolled urbanisation, infringement by other utilities, encroachments and indiscriminate dumping of solid wastes and over flowing of sewers in drain. Other secondary problems includes sedimentation, vegetation growth and sewage outlets into the drains, etc. Due to the above, there is reduction in carrying capacity of the drains causing localized flooding to the settlements adjacent to the drains and tanks, in low lying areas. Many tank beds have been converted into residential layouts causing disappearance of water body which otherwise would have acted as detention ponds / holding tanks. The damage caused by the floods, are very serious in terms of life and property. Therefore, there is an urgent need to examine the status of existing storm water drainage system, the reasons for the frequent flooding and devise possible remedial measures to alleviate the damage.

1.2 **PROJECT BACKGROUND:**

The stated goal for remodeling of existing storm water drain project is to improve the carrying capacity of the existing system, for the delivery of storm water without flooding the low lying areas of the city and also to provide improvised environmental sanitation services to the city of Bangalore, with emphasis on the urban poor and vulnerable groups and within a process of long term environmental, economic, social and institutional sustainability.

During recent monsoon, Bangalore city experienced unusually high intensity rainfall, which resulted in substantial damage to both life and property.

Bangalore Mahanagara Palike (BMP), the agency responsible for maintenance of the city's infrastructure with an endeavour to obviate the problems faced by the city, therefore took up the project including preliminary investigations, detailed survey, system analysis and proposals for improvements and capacity augmentations of the existing drainage system in Bangalore.

Bangalore Mahanagara Palike invited proposals from competent consultants based on the approach document prepared by BMP and entrusted the work to M/s. STUP Consultants Private Limited, Bangalore to provide necessary technical support to set priorities on existing drainage system rehabilitation needs, and to explore the potential options for augmenting the carrying capacity of the system, considering future hydraulic design requirements in Bangalore City.

Further, the outputs of this study will provide the basis for developing a comprehensive plan for the drainage system and detailed proposals for selected improvement projects to be implemented by BMP.

Bangalore city topography is marked by the presence of Four Primary valleys, viz.,

- 1. Vrishabhavathy Valley
- 2.Koramangala Valley
- 3.Challaghatta Valley
- 4.Hebbal Valley

Based on the survey conducted, the length of the primary drains in the four major valleys are as shown in the table below:

SI.No.	Name of the Valley	Primary Drain Length (m)
1.	Vrishabhavathy Valley	32,038
2.	Koramangala Valley	19,634
3.	Challaghatta Valley	16,152
4.	Hebbal Valley	25,800
	Total length of drain	93,624

This volume of the report forms the detailed project report for Koramangala Valley.

1.3 OBJECTIVES OF THE PROJECT:

The objectives, defined in broad terms are:

- •To study the main reasons for failure of the existing storm water drains to dispose the storm water without flooding the areas of the city.
- •To study the carrying capacity of the existing primary and secondary storm drains.
- •To suggest modifications to the primary and secondary storm drains in respect of improvement, in flow characteristics and capacity.
- •To study the feasibility of segregating sewage from storm water and the extent practicable.
- •To provide rehabilitation to culvert / bridges constructed across storm water drains.
- •To reconstruct the culverts/bridges, that are causing hindrances to free flow of water in the drains.

1.4 **REPORT OBJECTIVES**:

This report provides, details of existing storm water drainage system in Koramangala Valley, wherein it also provides a strategic framework to ensure better management of drainage assets in Bangalore which also has significant implications in:

•Future management of storm drainage system in Koramangala Valley.

•Strategies to be followed for implementation of improvement measures.

•Resources generation to achieve the stated objectives and targets.

For the report purpose, the studies made are:

- ·Identifying the low lying area and reasons for flooding
- •Assessment of existing condition of drainage system
- •Evaluation of development options for existing system.
- •Examining option / strategies for the preferred options for local applications.
- •Preparation of cost estimates for works and associated operation and maintenance.
- •Review of existing management of drainage system and the recommendations for institutional improvements.

•Identification of further studies and investigation required for refinement.

Further, for the preparation of this report, supplementary sources are considered at a macro level and also the results of those studies and investigations are integrated into this report.

This report has the following structure:

VOLUME I Main Report VOLUME II Drain Alignment Plan, Longitudinal Section, Cross Section & General Arrangement Drawings for Koramangala Valley.

1.5 SCOPE OF ASSIGNMENT:

A Brief scope of assignment to be rendered by the Consultants as defined in the TOR is given below:

Detailed topographical and geo-technical survey

Assessment of quantity of runoff

- Adequacy analysis of existing drains
- Hydraulic and structural designs and drawings
- Cost estimation and Bill of Quantities
- •Technical specifications.
- Bid Documents
- •Slicing and Packaging (Phasing for Implementation)
- •Assistance in Inviting and evaluating Bids
- Project Supervision

1.6 PHASES OF THE PROGRAMME

The consultancy services which is to be carried out in three (3) phases are as given below:

- **Phase 1:** Technical, Economical and Environmental Feasibility Study of the Project of Remodeling of the Storm Water Drain System.
- Phase 2: Detailed engineering design, preparation of tender documents, cost estimates for the remodeling work, Preparation of Bid document and assist BMP to entrust the work to experienced, competent and successful agency.
- **Phase 3:** Supervision of the construction works.

1.7 PREAMBLE TO INCEPTION REPORT AND FEASIBILITY REPORT:

Reference are made in this section to the earlier inception report and feasibility report. Wherein the inception report clearly narrates the identification of different valleys, conditions of existing storm drains, new drains (i.e., not considered in TOR), low lying areas in different drainage zones, etc. in this report. The details from previous data, recommendations made during past initiatives, current approach, methodology, design procedures and work plans adopted for preparation of feasibility report are indicated in this report.

Based on through understanding of prevailing site conditions and the observations and comments furnished by BMP over the approach and methodology proposed in our inception report for the preparation of detailed project report. A techno - economical feasibility report was prepared and submitted to BMP during March, 2003. Wherein, detailed condition survey/assessment of existing system, reasons for the failure of the system, analysis of rainfall data for a period of 25 years for different intensities and frequencies, detailed landuse and land cover analysis for the entire catchment area, categorising the landuse and land cover data into different categories of landuse, identifying micro/sub catchments contributing for each drainage zones, adequacy analysis of the existing system for different year return periods, identification of the reasons for its inadequacy, identification of problematic areas, condition survey/assessment of existing cross drainages for its structural stability and hydraulic capabilities, existing environmental and sanitation conditions, etc. are narrated in detail.

After having consecutive discussion and number of site visits for cross verifying the analysis results for its hydraulic behaviour with prevailing site conditions. Strategic actions and recommendations were proposed, alternative proposals were identified, existing tertiary drains, which require improvements were identified and accordingly mitigative measures were suggested. Detailed analysis, designs and drawings for the proposed structures were prepared, strip plans indicating properties requiring acquisition and proposed works, preliminary cost estimates, phasing and slicing of works, draft tender documents were done and submitted to BMP for better understanding of the systems functionality.

After the acceptance of the proposals and recommendation suggested in the feasibility report by BMP, at this juncture, it is proposed to submit, detailed project report and drawings for Koramangala valley to BMP for execution and its further necessary action.

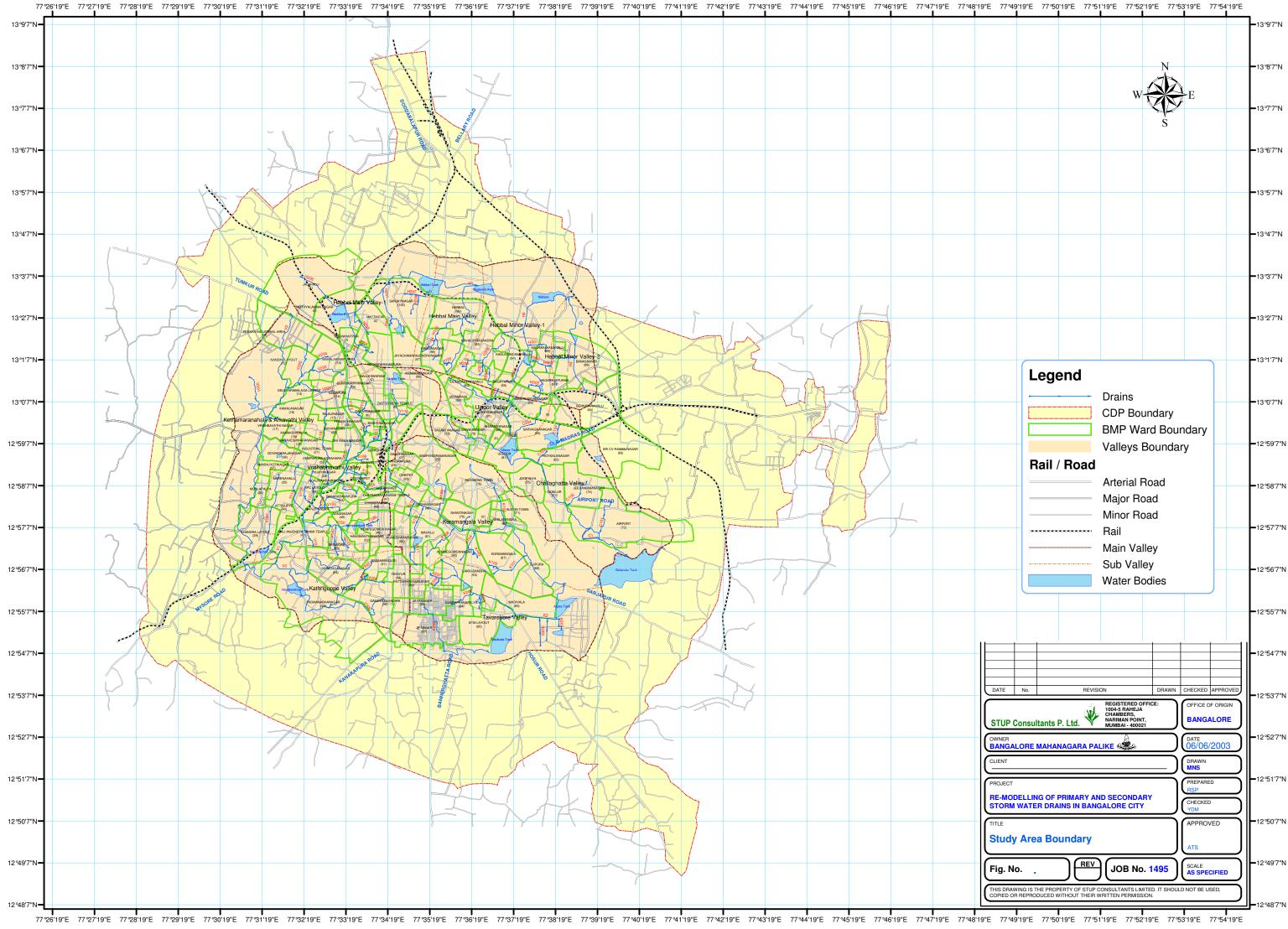
CHAPTER - 2

ASSESSMENT OF EXISTING STORM WATER DRAINAGE SYSTEM

2.1 INTRODUCTION:

Bangalore city is at an altitude of 894 m. above MSL and has the general advantage of natural valleys offering good drainage for storm water. However, misuse of these valleys result in flooding. The two main factors responsible for flooding in Bangalore are:

- A general neglect of the basic functions of the major drains which has allowed numerous channel restrictions to occur and caused a general down grading of the channel capacities, without provision for floods larger than design and;
- >The apparent acceptance of a design standard for main drains in the core area that is extremely low by accepted standards for a large city with rolling topography.


The study concerned with tertiary drains and their level of services offered is outside the current scope.

The area covered by the study is basically the area administered by Bangalore Mahanagara Palike. A locality plan showing the extent of study area has been included as Figure 2.1.

2.2 DESCRIPTION OF CATCHMENTS:

Bangalore is situated on the divide between the Cauvery Basin and the Ponnaiyar Basin, at an elevation of approximately 894 m. above MSL and also with nearly 40% of the projected future population living within the Cauvery Basin. There are four major valleys and five minor valleys. Three of the four major valleys namely, Vrishabhavathy (V-Valley), Koramangala (K-Valley) and Challaghatta (C-Valley), run generally from North to South direction dividing the greater part of the metropolitan area into three separate and distinct drainage zones. A fourth major valley, referred to as the Hebbal series (H-valley), forms the drainage zone to the North of the ridge and runs in Northeast direction.

Five minor valleys, the Kathriguppe and the Tavarekere lie to the South, the Kethamaranahalli and Arkavathi lie to the North-West, Hebbal minor valleys 1 & 2 lie

to the North-East. All these valleys lie to the east, lie outside the tributary areas of the major valleys and drain independently. The catchment boundaries of major and minor valleys are shown in Figure 2.2.

Details of these catchments are given in Table 2.1.

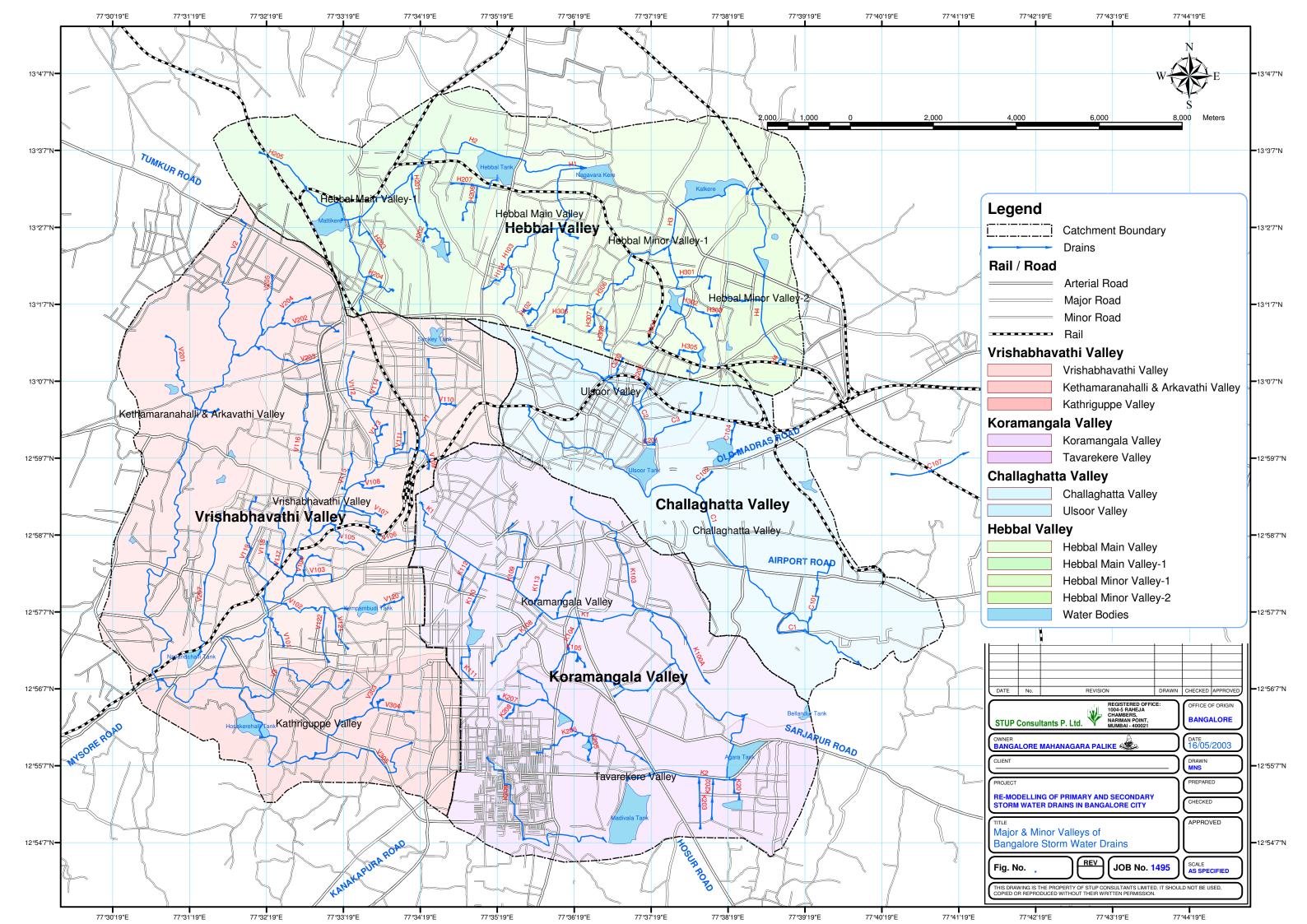

Valley Names	Major & Minor Valleys	Drop (m.)	Pri. Drain Origin Point	Pri. Drain Terminal Point	Catchment Area (Ha.)	Total Length of Primary Drain (m.)	Munici palities in catchment
Vrishabhavathi Valley	Vrishabhavathi Main Valley		Sankey tank	Kenchanahalli Near Mysore Road	4,070	13,888	BMP, Kengeri &
	Kethamaranahalli & Arkavathi Valley	120	Near Peenya Indl. area	Kenchanahalli Near Mysore Road	3,045	13,300	Patanagere
	Kathariguppe Valley		Near Srinivasnagar	Rajarajeshwarina gar	1,819	4,850	
Koramangala Valley	Koramangala Main Valley	20	Near Majestic Area	Bellandur lake	3,548	12,000	BMP, Bommanahall i & Mahadevepur a
	Tavarekere Valley	20	Near NIMHANS Hospital	Bellandur lake	2,690	7,625	
Challaghatta Valley	Challaghatta Main Valley	30	Near Vasanthnagar	Bellandur lake	3,168	12,000	BMP, Krishnarajapu ra
	Ulsoor Valley		Near Jayamahal Extn.	Ulsoor lake	710	4,150	la
Hebbal Valley	Hebbal Main Valley		Near Matadahalli	Nagavara lake	836	4,425	BMP, Dasarahalli &
	a) Hebbal Main Valley – 1	30	Near I.I.S.C	Hebbal lake	2,590	9,000	Bayatarayana pura
	b) Hebbal Minor Valley – 1	50	Near Jaibharathnagar	Kalkere lake	1,529	7,375	
	c) Hebbal Minor Valley – 2		Near Chikka Banasawadi	Kalkere lake	754	5,000	

TABLE 2.1 SUMMARY OF STORM WATER DRAINAGE CATCHMENT

Note: Catchment areas indicated in the table is inclusive of CMC / TMC areas coming within respective catchment boundaries.

2.3 DESCRIPTION OF KORAMANGALA VALLEY:

2.3.1 Koramangala Valley:

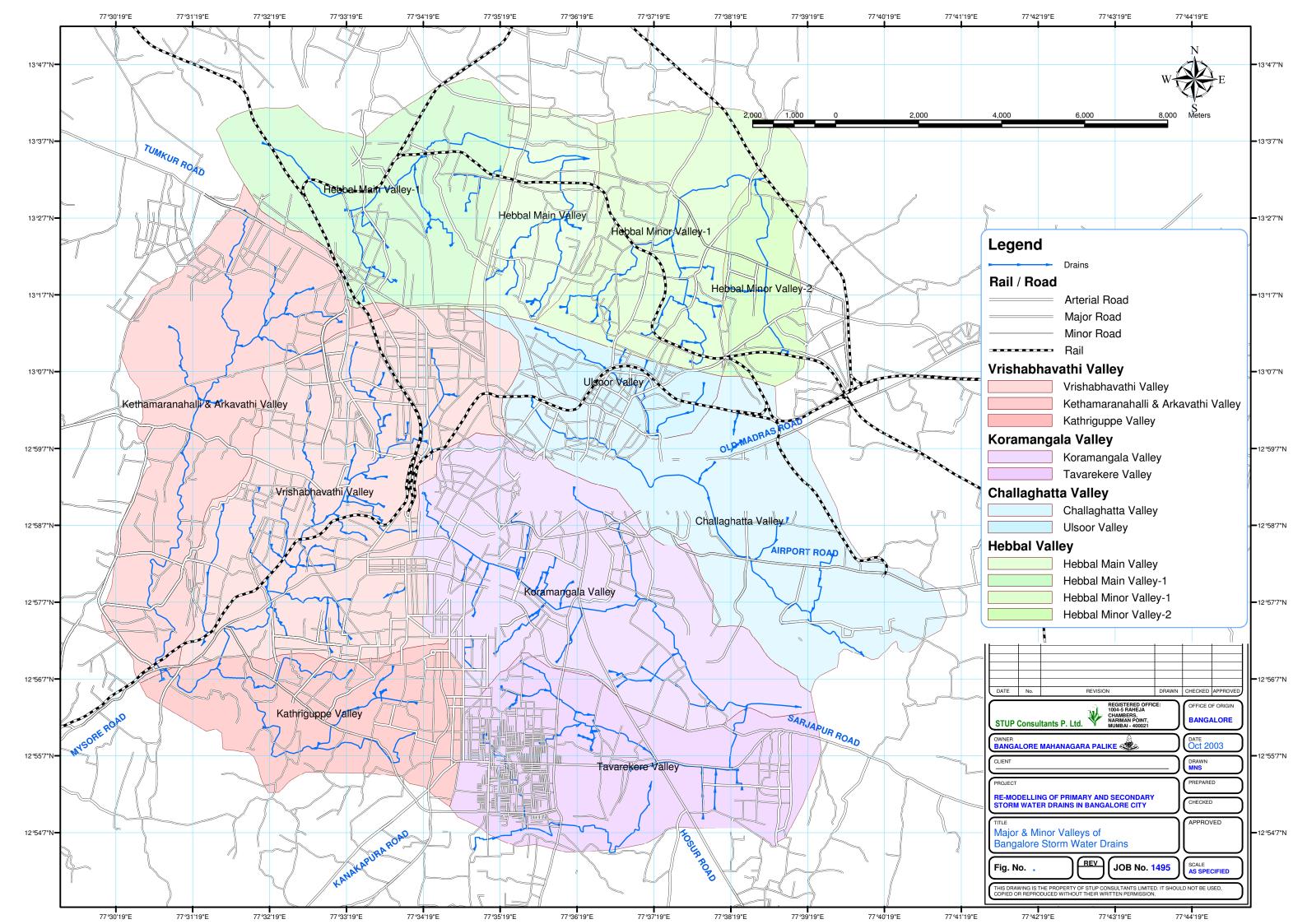
The Koramangala valley comprises of two sub catchments i.e., Koramangala main valley and Tavarekere valley.

Koramangala main valley starts from the vicinity of Bangalore city railway station near Subashnagar and runs through busy Cottonpet area, Narasimharaja road, J.C. Road, Wilson Garden area and flows through Koramangala area and ends at Bellandur tank.

Koramangala main valley primary drain comprises of fourteen secondary storm drains, covering the entire Koramangala main valley. The details of these drains are as mentioned in Table 2.2 and are shown in Figure 2.3.

The other segment known as Tavarekere valley which starts from NIMHANS hospital campus near Byrasandra and runs through Balajinagar, Bismillahanagar, Lakshmipura, Tavarekere, Mudduramanagara, B.T.M layout, Madivala, H.S.R. Layout and Venkatapura ends at Bellandur tank. The overflow of Agara tank also flows into this drain and joins Bellandur tank.

The Tavarekere valley comprises of one primary drain and ten secondary storm drains. Details of these drains are also mentioned in Table 2.2 and are shown in Figure 2.3.


TABLE 2.2 DETAILS OF KORAMANGALA VALLEY STORM DRAINS

	Drain ID		Туре	Start	End	Lengtl (Mts.)
Korama	ingala Ma	ain Valley (K1):				
1	K100	Koramangala	Pri.	Near Upparpet Area	Bellandur Tank	12,000
2	K101	Koramangala layout (1)	Sec.	Hosur Road	Koramangala Slum	2,000
3	K102	Koramangala layout (2)	Sec.	Hosur Road	Jyothi Nivas College	300
4	K103	Austin Town	Sec.	Brigade Road	Neelasandra	3,400
5	K104	Laksandra	Sec.	Sampangiramnagar	Annepalya	1,700
6	K105	-	Sec.	-	-	-
7	K106	-	Sec.	-	-	-
8	K107	Lakshmanna Garden	Sec.	Langford Town	Jalakanteshwarapur	770
9	K108	Siddapura	Sec.	Jayanagar I ^{st.} Block	Wilson Garden	1,925
10	K109	R.R.M. Roy Extn.	Sec.	Kanteerava Stadium	Sudhamanagar	2,000
11	K110	Lalbagh	Sec.	Lalbagh tank	J.C.Road	625
12	K111	Jayanagar	Sec.	Jayanagar 3 rd Block	Lalbagh tank	950
13	K112	Kalasipalya	Sec.	Paravathipura	Kumbaragundi	715
14	K113	Koramangala Slum	Sec.	Rajendranagar	Akhila Karnataka Animal Rehab. Centre	1,100
15	K114	Akkithimanahalli	Sec.	Divyashree Chamber	K.S.R.T.C. Training College	2,225
				Total Length of	Primary Drains	12,00
				Total Length of S	Secondary Drains	17,710

avalen	ere valley	(KZ).				
1	K200	Tavarekere Valley	Pri.	Nimhans Hospital	Agara Tank	7,625
2	K201	Vanganahalli	Sec.	Vanganahalli	Near Agara Tank	1,350
3	K202	Yellukunte	Sec.	Yelukunte	Venkatapura	950
4	K203	H.S.R Layout	Sec.	Crompton Greaves	Outer Ring Road	1,200
5	K204	Madivala	Sec.	Near Madivala Tank	Hosur Road	705
6	K205	Tavarekere	Sec.	Mudduramanagar	Bismillahanagar	525
7	K206	Guruppanapalya	Sec.	Tayappanahalli	Bovi Colony	1,245
8	K207	Krishnappa Garden	Sec.	Bairasandra Extn.	Bannerghatta Road	1,225
9	K208	Law College	Sec.	Tilaknagar	Krishnappa Garden	425
10	K209	J. P. Nagar	Sec.	Jayanagar 4 th Block	C.S.B. Junction	9,500
11	K210	Puttenahalli	Sec.	J.P.Nagar, Puttenahalli	Dollars Colony	1,700
			Т	otal Length of Primary	Drains	7,625
			Т	otal Length of Second	ary Drains	18,825

RECONNAISSANCE SURVEY: 2.4

1

Reconnaissance survey was carried out in Koramangala valley including Tavarekere valley. The critical locations which cause obstruction to smooth flow of water have been identified and photographed.

Reconnaissance survey was carried out with a view to :

•Descriptize the contributory areas of different drains

 Investigate the condition of drains, cross drains, type of construction, extent of bed lining, etc.

•Examine feasibility of widening / deepening of the drain to carry the design flow.

•Extent of land requirement for widening

•Status of land use pattern / type and intensity of development adjoining the drain (i.e., residential, commercial, industrial or vacant land etc.)

•and other issues which have bearing on the drains.

2.5 REPORT ON FIELD SURVEY OF DRAINS IN KORAMANGALA VALLEY:

2.5.1 METHODOLOGY

Having identified the drains, the chainage were marked along the drain after measuring the length of the drain starting from `0' chainage at the upper starting point and the chainage increasing towards the down stream direction.

Entire topographic survey was done based on local coordinate system using total station equipment and traversing it all along the drain. Every point is surveyed for its planimetry and height. For heights inside the drain, this was necessary since conventional levelling was not feasible as the drain bottom is at a very low level and also at some places compared to the sides of the drain. By resorting to Total station equipment's, the names of the roads, localities and important land marks were picked up at site and incorporated along with others details.

The heights were given to points with the help of Total stations based on T.B.Ms

established all along the drains on permanent objects such as culverts. Before that, the existing GTS B.Ms established by Survey of India were checked for stability and after ensuring the stability of these B.Ms the levelling was done to establish T.B.Ms all along the drain.

•Methodology adopted in representing the drains in the drawing:

Plan showing details of drains, land marks, bench marks, encroachments,, locations where sewage entering into storm water drain, condition of retaining walls, location of bridges and cross drainages and utility crossing are identified in the drawing to a scale of 1:1000 and longitudinal section details of drains in 1:1000 / 1:100 are proposed in the same drawing.

As per TOR, each primary and secondary drains in all the valleys are to be identified w.r.t to their respective predominant locality names and correspondingly numbering has been made.

For ease of identification, sub drains in all the valleys have been identified from down stream end, accordingly, numbers have been assigned for each secondary drains in the respective valleys and the same are to be read as follows.

- **Eg**.: 1) K100 = K1 represents Koramangala main valley first primary drain.
 - 2) K101 = K1 represents Koramangala main valley first primary drain & 01 indicates first Secondary drain in Koramangala main Valley.

•Elevation drawings of culverts / bridges:

The vent way measurements were collected at site along with width of piers / columns and also heights at various levels of the culverts along with information regarding the type and material of piers / columns, slabs over culverts and parapet wall. These culverts were serially numbered and each culvert has an identical number both in strip map and its elevation drawing. The sectional drawings also show the pipes, manholes, etc. that come immediately at that location.

Longitudinal Section:

Showing heights at bed level at every 25 m. apart on a horizontal scale of 1:1000 and on vertical scale of 1:100 has been made for every drain.

•Cross-section:

Cross section at every 25 m. interval has been made showing drain depths, levels at top of the silt, bed level and also at the edges of the drain. Heights were given on top of drain wall and also at the adjoining land. The section also indicate whether the walls / buildings that rests on the drain at that particular section.

•Other Items:

Locations where public have the tendency of dumping garbage in the drain, sewer outlets are noted at sites along with its measurements and also utility lines inside and across the drain etc., are indicated separately in the condition survey formats.

2.6 DETAILS OF EXISTING STORM DRAINS IN KORAMANGALA VALLEY :

2.6.1 OBSERVATIONS DURING SITE INVESTIGATIONS OF KORAMANGALA MAIN VALLEY STORM DRAIN (K100):

Koramangala valley comprises of two valleys namely Koramangala main valley and Tavarekere valley.

Among the two valleys, Koramangala main valley is the longest valley and it starts from busy and congested Subashanagar area and runs through Cottonpet, Akkipet, Sourastrapet, Sulthanpet K.R. Market area, Narasimaraja road, J.C. Road, Wilson Garden area and flows through Koramangala area and terminates at Bellandur tank.

The other segment known as Tavarekere valley which starts from NIMHANS hospital campus near Byrasandra and terminates at Bellandur tank, the overflow of Agara tank is also connected to Bellandur tank.

Koramangala main valley nalla is divided into 10 segments, for ease of assessment. The details of each segment is as mentioned below :

Segment - 1 (Chainage 0.00 m. to 1,000.00 m.)

(From Subashanagar near O.T.C. Road upto B.V.K. Iyengar Road)

This section of the drain starts from a very busy commercial and congested residential area near Subashanagar and continues upto fruit market area near BVK lyengar road. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding Upparpete, Cottonpete, Akkipete, Chickpete, Cubbonpete, Sourastrapete, Thargupete, Nagarthpete, Mamulpete and Sulthanpete area forms the part of contributory areas for this section.

•This reach of storm drain is almost covered with RCC/BS slabs.

- •Number of residential and commercial establishment are noticed on either side of the drain.
- •Due to non functionality of tertiary drains, localised flooding problems are observed at many places. i.e., near Chickpete, Akkkipete, Sourastrapete and Mamulpete areas.
- •The width of drainage channel varies from 2.5 m to 3.0 m & depth varies from 1.2 to 1.6 m.
- •S.S.M. Masonry walls have been constructed on either sides, the condition of the side walls is in good to moderate condition.
- •Dumping of solid waste, garbage and silt deposition is noticed at many places inside the channel, thereby causing obstruction for free flow of water in the channel.
- •Natural alignment of drain is altered at many places. Due to which, the width of the drain is reduced at many places.
- •The drainage channel flows across many minor culverts. Detail information about drain and culverts cannot be obtained, because it is all covered/encroached under commercial establishment.

•Large number of utility crossings and cables are observed at many places in this reach.

Segment - 2 (Chainage 1,000.00 m to 2,000.00 m.)

(From B.V.K. Iyengar Road upto 2nd Cross, New Bamboo Bazar Road))

This reach of the drain starts from fruit market area near B.V.K. Iyengar road and continues upto New Bamboo Bazaar road. As per the preliminary investigations made, it was noticed that localities surrounding Cubbonpete, Nagarthpete, K.R. Market area, Silver Jubilee Park, N.R. Road, New Tharagupete and part of Kalasipalya area forms the part of contributory areas for this section.

•This reach of storm drain is almost covered with RCC/BS slabs.

•Number of commercial establishment are noticed on either side of the drain.

- •Due to non functionality of tertiary drains, localised flooding problems are observed at many places. i.e., near K.R. Market area, Kalasipalya bus stand, N.R. Road and Bamboo bazar area.
- •Recently BMP has desilted this reach of drain and removed some of the unauthorised structures that where constructed over the drain near K.R. Market and further, new RCC walls have been constructed on either sides of the drain.
- •The width of drainage channel varies from 4.0 m to 6.0 m & depth varies from 1.8 to 2.0 m.
- •S.S.M. Masonry walls have been constructed on either sides, the condition of the side walls is in good to moderate condition.

•Drain width is considerably reduced near N.R. Road upto 3rd cross Bamboo bazar.

•Dumping of solid waste, garbage and silt deposition is noticed at many places inside the channel thereby causing obstruction for free flow of water in the channel.

•The drainage channel flows across many minor culverts. Detail information about

drain and culverts cannot be obtained, because it is all covered/encroached under residential buildings/commercial establishment.

- •Large quantity of sewage is being discharged into storm drain from restaurants and other commercial establishments.
- •Large number of utility crossings and cables are observed at many places in this reach.
- •During the investigation only one culvert was identified, i.e., near K.R. Market (behind Darga). which is an arch culvert of 8 m width, with 5 vents, constructed using lime mortar.

Segment - 3 (Chainage 2,000.00 m to 3,000.00 m.)

(From 3rd Cross, New Bamboo Bazar Road upto 2nd Cross Road, Sudhamanagar).

This part of the drain reach starts from a busy commercial bamboo bazar area and continues upto Sudhamanagar. As per the preliminary investigations, it was noticed that localities surrounding Kalasipalya, Parvathipura, Journalist Colony, Kumbaragundi, J.C. Road and Sudhamanagar area forms the part of contributory areas for this section.

•This reach of drain is open drain except near J.C. Road & Lalbagh Road.

•Service road has been encroached and number of commercial establishment have been constructed on either side of the drain in bamboo bazar area.

•Drain width is reduced near 3rd cross Bamboo bazar upto 1st main J.C. Road.

- •Large number of utility crossings are noticed under the commercial building near 1st main J.C. Road.
- •Multistoreyed commercial complex have been constructed over the storm drain near J.C. Road & Lalbagh Road.
- •Due to non functionality of tertiary drains, localised flooding problems are observed at many places. i.e., near Bamboo bazar area, Kumbaragundi Journalist colony and Sudhamanagar.

- •Secondary storm drain (K112) which starts from Minerva circle flows through Journalist colony and joins the main drain near Kumbaragundi.
- •The width of drainage channel varies from 7.5 m to 10.0 m & depth varies from 2.2 to 2.4 m.
- •S.S.M. Masonry walls have been constructed on either sides, the condition of the side walls is in good to moderate condition.
- •Dumping of solid waste, garbage and silt deposition is noticed at many places inside the channel thereby causing obstruction for free flow of water in the channel.
- •One of the vent way of Lalbagh road bridge is completely blocked due to solid waste accumulation.
- •Detail information about cross drain across J.C. Road cannot be obtained, because it is all covered/encroached on either side by commercial establishments. But, during drain inventory survey, it is found that 3 spans of 1.2 m. width and 1.6 m. height and covered with stone slabs exists.
- •Large quantity of sewage flow is being discharged into storm drain from restaurants and other commercial establishments.
- •Large number of utility crossings and cables are observed at many places in this reach.
- •The drain throughout its stretch has service roads on either sides of the drain from J.C. Road upto Sudhamanagar. Few footbridges also exists in this reach.
- •Two nos. of public toilet blocks has been constructed over the drain between J.C. Road and Lalbagh road. Raw sewage from these toilet blocks is being directly discharged into storm drain and also support structures of these blocks are causing accumulation of silt and debris, which intern is obstructing free flow of water.

•Secondary drain (K110) which starts from a location near Lalbagh and joins the main

drain near 2nd Cross Sudhamanagar.

•The bed levels of subdrains and the main drain is almost at the same level.

- •Sewerage system and Solid waste management system is inadequate in the adjoining areas.
- •Minor cracks and cavities in the drain wall are noticed for a height of about 1.5 m. from the drain bed.
- •1000 mm. dia. BWSSB Water supply pipe is crossing the drainage channel near Lalbagh road bridge location.

Segment - 4 (Chainage 3,000.00 m to 4,000.00 m.)

(From 2nd Cross Road, Sudhamanagar upto K.S.R.T.C. Bus Depot near K.H.Double Road).

This section of the drain starts from Sudhamanagar and continues upto K.S.R.T.C. Bus Depot near K.H.Double Road.. As per the investigations made it was noticed that localities surrounding Sampangiramnagar, Raja Ram Mohan Roy Extn., Sudhamanagar, and Annipura form the part of contributory areas for this section.

- •This reach of storm drain is an open drain and Service roads exists on either side of the drain for the full length.
- •Due to non functionality of tertiary drains, localised flooding problems are observed at many places. i.e., near Sudhamanagar, Annipura, Raja Ram Mohan Roy Extn. & Shanthinagar.
- •Secondary storm drain K109 which starts from a location near Kanteerava stadium and flows through Sampangiramnagar & Raja Ram Mohan Roy Extn. joins the main drain at Annipura near K.H. Road.
- •The width of drainage channel varies from 11.0 m to 13.0 m & depth varies from 1.6 m. to 2.2 m.

•S.S.M. Masonry walls have been constructed on either sides, the condition of the side walls is in good to moderate condition.

•Large quantity of silt & garbage deposition is noticed at many places.

•The width of the drain is reduced near Annipura.

•Large nos. of utility crossings are observed near the culvert location at K.H. Road.

•Large quantity of floating materials and raw sewage flow is observed in the drain.

•The bed levels of sub-drains and the main drain is almost at the same level.

•Minor cracks and cavities in the drain wall are noticed for a height of about 1.5 m. from the drain bed.

•Vegetal growth is observed at many places in the drain wall.

•Drain bed is in natural condition, except at few places stone slabs have been laid.

•Drain wall needs to be reconstructed at few places in this reach.

Segment - 5 (Chainage length of about 4,000.00 m to 5,000.00 m.)

(From K.S.R.T.C. Bus Depot near K.H.Double Road upto Bannerghatta Road, near Jalakanteshwarapura).

This section of the drain starts from K.S.R.T.C. Bus Depot near K,H.Double Road and continues upto Bannerghatta road near Jalakanteshwarapura. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding Shanthinagar, Langford town, Richmond town, Akkithimmanahalli, Jalakanteshwarapura, Vinayakanagar, Wilson garden, Siddapura, Arekempanahali, Someshwarapura and Venkatareddy layout forms the part of contributory areas for this section.

•This reach of drain is an open drain.

- •Service roads exists on left hand side of the drain upto Wilson garden 9th cross road and further service road has been encroached on either side of the drain near Vinayakanagar.
- •Due to non functionality of tertiary drains and also floor level of residential buildings are below drain bed level, localised flooding problems are observed at many places. i.e., near Shanthinagar, Arekempanahalli, Venkatareddy layout & Vinayakanagar areas.
- •Secondary storm drain K107 & K114 which starts from a location near Divyashree chambers at Shanthinagar and flows through Langford town and joins the main drain near K.S.R.T.C. Bus Depot Another secondary storm drain K108 from Siddapura, which flows through Wilson garden joins the main drain in this reach. Further, bed level of these drains and main drain is almost same.
- •Large number of residential buildings have been constructed over the drain wall near Vinayakanagar.
- •Large number of sewer outlets from residential buildings are noticed near Vinayakanagar.
- •The width of drainage channel varies from 10.5 m to 13.5 m & depth varies from 1.5 m. to 2.0 m.
- •The drain width is considerably reduced near Vinayakanagar, due to construction of residential buildings at the edge of the drain wall intern providing less scope for providing improvements to the drain.
- •S.S.M. Masonry walls have been constructed on either sides, the condition of the side walls is in good to moderate condition.
- •Large quantity of silt & garbage deposition is noticed at many places.

•Large nos. of utility crossings are observed near the culvert location at Bannerughatta

Road.

•Large quantity of sewage flow is observed in the drain.

- •The bed levels of subdrains and the main drain is almost at the same level.
- •Minor cracks and cavities in the drain wall are noticed for a height of about 2 m. from the drain bed.
- •900 mm dia. BWSSB Water supply pipe is crossing the drainage channel near Bannerghatta road bridge location.

Segment - 6 (Chainage length of about 5,000.00 m to 6,000.00 m.)

(From Bannerghatta Road, near Jalakanteshwarapura upto Muthumariamma temple, near Lakshman Rao Nagar foot bridge location).

This section of the drain starts from Bannerghatta Road, near Jalakanteshwarapura and continues upto Muthumariamma temple, near Lakshman Rao Nagar foot bridge location. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding Anepalya (Gajendranagar) Pothallapa garden, MICO factory premises form the part of contributory areas for this section.

•This reach of drain is an open drain.

- •Service roads exists on both sides of the drain upto Hosur road and further on right hand side, service road has been encroached and few residential buildings have been constructed over the drain wall near Potthalappa garden.
- •Due to non functionality of tertiary drains and also floor level of residential buildings are below drain bed level, localised flooding problems are observed at many places. i.e., near Pothalappa garden areas.

•Drain reach from Hosur Road upto Mutthumariamma temple is in natural condition.

- •Dense residential hutments have been developed on either side of the drain near Lakshman Rao Nagar slum.
- •The drain reach near Lakshman Rao Nagar slum foot bridge location is taking a sharp meandering, which is altering the hydraulics of flow and intern obstructing free flow of water.
- •The width of the drainage channel is drastically reduced from 16 m. to 8 m. near the slum area and also there is no proper approach to the drain from road due to dense hutment development.
- •BWSSB sewerage system is not extended to the entire locality and also all the lateral pipe lines are directly discharging raw sewage into storm drain.
- •The width of drainage channel varies from 18.0 m to 22.5 m & depth varies from 1.5 m. To 1.8 m.
- •S.S.M. Masonry walls have been constructed on either sides upto Hosur road and the condition of the side walls is in good to moderate condition.
- •Large quantity of silt & garbage deposition is noticed at many places near Vinayakanagar.
- •Large nos. of utility crossings are observed near the culvert location at Bannerughatta Road.
- •BWSSB sewer pipeline is broken near Hosur Road due to which large quantity of sewage flow is observed in the drain.
- •The bed levels of subdrains and the main drain is almost at the same level.
- •Minor cracks and cavities in the drain wall are noticed for a height of about 2.2 m. from the drain bed.
- •Vegetal growth is observed at many places in the drain wall.

•1200 mm dia. BWSSB water supply pipe is crossing the drainage channel near Bannerghatta road bridge location.

Segment - 7 (Chainage length of about 6,000.00 m to 7,000.00 m.)

(From Muthumariamma temple, near Lakshman Rao Nagar foot bridge location upto Viveknagar Bridge Location).

This section of the drain starts from Muthumariamma temple, near Lakshman Rao Nagar foot bridge location and continues upto Viveknagar bridge. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding Neelasandra, Austin town, Victoria layout and Viveknagar area form the part of contributory areas for this section.

•This reach of drain is an open drain.

- •Due to non functionality of tertiary drains and also floor level of residential buildings are below drain bed level, localised flooding problems are observed at many places. i.e., near Rose garden area.
- •Drain reach from Mutthumariamma temple upto Austin town drain joining location it is in natural condition and further, the drain reach is having masonry walls on both sides.
- •Dense residential hutments have been developed on right hand side of the drain near Lakshman Rao slum.
- •Hutments have been removed and RCC residential buildings have been constructed by Karnataka State Slum Clearance Board (K.S.S.C.B.) for slum dwellers, leaving less scope for drain widening and continuation of service road.
- •The width of the drainage channel is reduced from 22 m. to 18 m. near corporation EWS quarters near Viveknagar bridge and also there is no proper approach to the drain from road due to dense hutment development.

•Sewage/water stagnation is observed near L.R. Nagar slum area.

- •Secondary storm drain K103 from Brigade road joins the main drain near Ambedkarnagar foot bridge.
- •S.S.M. Masonry walls have been constructed on either sides from Austin town drain joining location upto Viveknage bridge location and also the condition of the drain walls is in good to moderate condition.
- •Large quantity of silt & garbage deposition is noticed at many places near L.R. nagar slum.
- •The drainage channel flows across 1 no. of foot bridge.
- •The width of drainage channel varies from 12.0 m to 18.0 m & depth varies from 2.3 m. To 2.7 m.
- •BWSSB sewer pipe line is broken near newly constructed foot bridge i.e., near Ambedkarnagar due to which large quantity of sewage flow is observed in the drain.
- •Minor cracks and cavities in the drain wall are noticed for a height of about 1.5 m. from the drain bed.

Segment - 8 (Chainage length of about 7,000.00 m to 8,000.00 m.)

(From Viveknagar bridge location upto National games village).

This section of the drain starts from Viveknagar bridge and continues upto National games village. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding Gowda Muniswamy garden, Ejipura and A.S.C. centre defence area form the part of contributory areas for this section.

•This reach of drain is an open drain.

•Due to non functionality of tertiary drains and also floor level of residential buildings are below drain bed level, localised flooding problems are observed at many places near Ejipura area.

- •Drain reach from Viveknagar bridge location upto back yard of National games village it is very narrow and also in natural condition and further, the drain reach is having RCC wall on one side (i.e., towards N.G.V.) and there is no wall on the other side.
- •Dense residential hutments have been developed on down stream of Viveknagar bridge location.
- •The width of the draiange channel is reduced from 16 m. to 9 m. behind National games village and also there is no proper approach to the drain from road due to hutment development.

•Few sub drains behind N.G.V., from Ejipura side is joining the main drain.

•Sewage/water stagnation is observed near National games village.

- •The width of drainage channel varies from 9.0 m to 14.0 m & depth varies from 1.8 m. to 2.2 m.
- •Large quantity of silt & garbage deposition is noticed at many places near Viveknagar bridge and further down stream.
- •Minor cracks and cavities in the drain wall are noticed for a height of about 1.5 m. from the drain bed.

•Large quantity of sewage flow is observed in the drain.

Segment - 9 (Chainage length of about 8,000.00 m to 9,000.00 m.)

(From National games village upto Koramangala 1st Cross Road).

This section of the drain starts from National games village and continues upto Koramangala 1st Cross Road. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding Ejipura, Ashwini layout,

Srenivagilu tank bed, and Koramanagala layout area form the part of contributory areas for this section.

- •The drain reach inside National games village complex is a covered drain.. Large number of RCC columns have been constructed inside the drainage channel. Which intern is obstructing free flow of water and also large quantity of solid waste is being accumulated.
- •Drain reach inside National games village complex is covered and amenities like swimming pool etc. have been provided for residents of N.G.V. complex.
- •Natural alignement of drainage channel is altered behind National games village complex.
- •The drain reach after National games village complex upto Koramangala 1st Cross is an open drain.
- •Secondary storm drains K101, K102 which starts from Hosur road checkpost location & K113 starting from Rajendranagar is joining the main drain behind BMTC bus depot in this reach.
- •Due to non functionality of tertiary drains and also floor level of residential buildings are below drain bed level, localised flooding problems are observed at many places. In Ejipura, Ashwini layout and Srenivagilu tank bed area.
- •Drain reach from back yard of National games village upto Ejipura Church road bridge location, it is very narrow and also in natural condition.
- •Sewage/water stagnation is observed near inner ring road.
- •The width of drainage channel varies from 8.0 m to 12.0 m & depth varies from 1.5 m. To 1.8 m.
- •Minor cracks and cavities in the drain wall are noticed for a height of about 1.5 m. from the drain bed.

•Large quantity of sewage flow is observed in the drain.

Segment - 10 (Chainage length of about 9,000.00 m to 10,000.00 m.)

(From Koramangala 1st Cross Road upto Koramangala 1st Block, 8th Cross Road).

This section of the drain starts from Koramangala 1st Cross Road and continues upto Koramangala 1st Block, 8th Cross Road. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding Srenivagilu tank bed, Jakkasandra and Koramanagala layout area form the part of contributory areas for this section.

•This reach of drain is an open drain.

•The drain reach near Seva Gangothri Apartment is taking a sharp meandering, which is altering the hydraulics of flow and intern obstructing free flow of water.

•There is no service road on either side of the drain.

- •Large number of approach bridges with multiple spans and support structures for resting utilities have been constructed inside the drainage channel by private apartment owners. Which intern is obstructing free flow of water and also causing large quantity of solid waste accumulation.
- •Due to non functionality of tertiary drains and also floor level of residential buildings are below drain bed level, localised flooding problems are observed at many places. In Koramangala, Srenivagilu tank bed and Jakkasandra area.

•Sewage/water stagnation is observed near Koramangala 1st main road.

- •The width of drainage channel varies from 10 m to 14 m & depth varies from 1.8 m. to 2.2 m.
- •Minor cracks and cavities in the drain wall are noticed for a height of about 1.5 m. from the drain bed.

•Large quantity of sewage flow is observed in the drain.

Segment - 11 (Chainage length of about 10,000.00 m to 12,000.00 m.)

(From Koramangala 1st Block, 8th Cross Road upto a location near Bellandur tank).

This section of the drain starts from Koramangala 1st Block, 8th Cross Road and continues upto a location near Bellandur tank. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding part of Koramanagala layout area form the part of contributory area for this section.

•This reach of drain is an open drain.

- •The drain reach after Koramangala 1st Block it is in natural condition and very recently BMP has desilted and widened the entry point of the drain near the marshy land and the gradient at this location is very flat.
- •There is no service road on either side of the drain.
- •Large number of approach bridges with multiple spans and support structures for resting utilities have been constructed inside the drainage channel by private apartment owners. Which intern is obstructing free flow of water and also causing large quantity of solid waste accumulation.
- •Due to non functionality of tertiary drains and also floor level of residential buildings are below drain bed level, localised flooding problems are observed at many places. In Koramangala, Srenivagilu tank bed and Jakkasandra area.
- •Sewage/water stagnation is observed near Koramangala 1st main road.
- •The width of drainage channel varies from 10 m to 14 m & depth varies from 1.8 m. to 2.2 m.

•Large quantity of sewage flow is observed in the drain.

2.6.2 OBSERVATIONS DURING SITE INVESTIGATION OF SECONDARY DRAINS IN

KORAMANGALA MAIN VALLEY:

2.6.2.1 Koramangala Layout Drain: (K101)

(Hosur Road to Koramangala Slum), (Chainage length of about 2,000.00 m.)

This section of the drain starts from a place near MICO factory on Hosur Road and confluence's with main drain near National Games Village. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding Koramangala 5th, 6th & 7th Block forms part of contributory areas for this section.

- •The drain reach between Koramangala 5th block to a place near Koramangala club is covered with RCC slab. Further, from Koramangala 80 ft. road it is open drain
- •The width of drainage channel is about 2 m to 5 m & depth varies from 1.2 to 1.8 m., in this section.
- •This stretch has residential buildings, apartments and service road on either side of the channel.
- •Large number of utility crossings & manholes are observed near Koramangala 80 ft. Road
- •Large quantity of earth, silt deposition and garbage dumping is noticed inside the drain.
- •Masonry sidewall have been constructed all along the channel on either side. The condition of the side walls is in good to moderate condition.
- •The drain bed is in natural condition.
- •The locality adjacent to Koramangala club has been developed well below the HFL level of the SWD and intern causing localized flooding.

2.6.2.2 Koramangala Layout Drain - I: (K102)

(Hosur Road to Jyothi Nivas College), (Chainage length of about 300.00 m.)

This section of the drain starts from a place near Hosur Road and continues upto

Koramangala 80^{ft} road. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding Koramangala industrial area & Koramangala 5th Block forms part of contributory areas for this section.

- •The width of drainage channel is about 1 m to 3 m & depth varies from 1.0 to 1.4 m., in this section.
- •This stretch has industrial establishments and few open fields on either side of the channel.
- •A portion of the drain reach near Koramangala 5th block is covered with RCC slab.
- •Masonry sidewall have been constructed all along the channel on either side. The condition of the side walls is in good to moderate condition.

2.6.2.3 Austin Town Drain (K103):

(Brigade Road to Neelasandra), (Chainage length of about 3,400.00 m.)

This section of the drain starts from a place near Brigade Road and confluence with the main drain near Neelasandra main road. As per the preliminary investigations, it was noticed that localities surrounding Brigade Road, M.G. Road, Ashoka nagar, Victoria layout, Austin town, Jayrajnagar, Ukadapalya, Elagondanapalya, Vannarpet, Neelasandra and rose garden area forms part of contributory areas for this section.

- •The width of drainage channel is about 5.0 m to 13.0 m & depth varies from 1.0 m to 1.6 m., in this section.
- •This stretch has commercial establishments, residential buildings, apartments and service road on either side of the channel.
- •The drain reach near football stadium is open drain. And very recently it has been covered for a certain length and being utilised for vehicular parking by commercial establishments.
- •The tertiary drain which flows from BMP multilevel parking area near Shoppers Stop complex and flows inside Kendiriya Vidhyalaya is covered and it is almost collapsed at many places.

- •Approach bridges constructed by private apartments owners near Palm groove road is having very inadequate vent size and intern obstructing free flow of water.
- •Power transmission line towers are noticed at many places all along the drainage channel near Austin town.
- •Large quantity of earth, silt deposition, garbage dumping and vegetation growth is noticed inside the drain.
- •Masonry sidewall have been constructed all along the channel on either side. The condition of the side walls is in good to moderate condition.
- •The drain width is considerably reduced at few places.
- •The height of sidewall at many places are well below groundlevel, thereby allowing silt/earth to enter into drainage channel.
- •The drain bed is in natural condition.
- •Sewerline of about 450 mm dia has been laid across SWD near Bazar street.
- •Pilot drain has been constructed to convey summer flow from Bazar street upto primary drain.
- •Due to non functionality of tertiary drains and also floor level of residential buildings are below drain bed level, localised flooding problems are observed at many places. i.e., near Rose garden area.
- •Minor cracks and cavities in the drain wall are noticed for a height of about 1.5 m. from the drain bed.
- •The bed level of this secondary drain and primary drain is almost at the same level

•Large quantity of sewage flow is observed in the drain.

2.6.2.4 Laksandra Drain (K104):

(Sampangiramnagar to Annepalya), (Chainage length of about 1,700.00 m.)

This section of the drain starts from a place near Sampangiramnagar near Lakasandra and confluence with the primary drain at Annepalya near Pothalappa garden. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding Sampangiramnagar, Lalajinagar, Chandrappa layout, Guptha layout, Govardhanagar, Ranga Dasappa layout, Pukraj layout, Part of Lakasandra and MICO factory premises forms part of contributory areas for this section.

- •This reach of drain is an open drain upto MICO factory and further, it flows through factory premises and it is covered upto main drain.
- •The width of drainage channel is about 1.2 m to 1.6 m & depth varies from 1.2 to 2 m., in this section.
- •This stretch has residential buildings and commercial establishments on either side of the channel.
- •Large quantity of earth, silt deposition, garbage dump and vegetation growth is noticed inside the drain
- •Steel grating has been installed near MICO factory entrance/cycle stand.
- •Masonry sidewall have been constructed all along the channel on either side. The condition of the side walls is in good to moderate condition.
- •The height of sidewall at many places are well below groundlevel, thereby allowing silt/earth to enter into drainage channel.
- •Due to non functionality of tertiary drains and also floor level of residential buildings are below drain bed level, localised flooding problems are observed at many places. i.e., near Pothalappa garden area.

•Minor cracks and cavities in the drain wall are noticed for a height of about 1.0 m. from the drain bed.

•The drain bed is in natural condition.

2.6.2.5 Adugodi Drain: (K105)

(Adugodi to Laksandra), (Chainage length of about 350.00 m.)

This section of the drain starts from a place near Bangalore Milk Dairy training institute and confluence with the Laksandra drain (K104) near Pukraj layout at Bannerghatta Road. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding Nanjappa layout and part of Adugodi forms part of contributory areas for this section.

•This drain reach is an open drain and lies inside the MICO factory sports complex.

- •The width of drainage channel is about 1.2 m to 1.8 m & depth varies from 1.2 m to 1.6 m., in this section.
- •This stretch has dense residential buildings on one side and MICO factory campus on the other side.
- •Large number of sewer outlets being directly connected to this drain is noticed.
- •Large quantity of earth, silt deposition and garbage dump is noticed inside the drain.
- •Masonry sidewall have been constructed all along the channel on either side. The condition of the side walls is in good to moderate condition.
- •The height of sidewall at many places are well below groundlevel, thereby allowing silt/earth to enter into drainage channel.

•The drain bed is in natural condition.

2.6.2.6 Lakshmana Garden Drain: (K107)

(Langford town to Jalakanteshwarapura),(Chainage length of about 770.00 m.)

This section of the drain starts from a place near Langford town on Hosur Road and confluence with primary drain near Vinayakanagar. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding Langford town, KSRTC colony, Jalakanteshwarapura & Vinayakanagar forms part of contributory areas for this section.

- •This reach of drain is an open drain.
- •The width of drainage channel is about 2.0 m to 4.0 m & depth varies from 1.4 m to 1.8 m., in this section.
- •The drain inside the burial ground is open and in natural condition and further the reach near Vinayakanagar is covered with BS slab.
- •Large quantity of silt deposition and garbage dumping is noticed inside the drain.
- •The bed level of this secondary drain and primary drain is almost at the same level
- •Masonry sidewall have been constructed all along the channel on either side. The condition of the side walls is in good to moderate condition.
- •Drain bed is in natural condition.

2.6.2.7 Siddapura Drain: (K108)

(Jayanagar 1st Block to Wilson Garden), (Chainage length of about 1,925.00 m.)

This section of the drain starts from a place near Jayanagar 1st Block and confluence with the main drain near Wilson Garden. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding Jayanagar 1st Block, Someshwaranagar, Arekempanahalli, Siddapura, Chinnayanapalya, Hombegowdanagar & Wilson Garden forms part of contributory areas for this section.

- •This reach of drain flows through dense builtup and low lying area.
- •The width of drainage channel is about 2.5 m to 4.0 m & depth varies from 1.0 m to 1.4 m.
- •This stretch has residential buildings, horticulture nursery's, service road and few open fields on either side of the channel.
- •Large quantity of earth, silt deposition and garbage dumping is noticed inside the drain.
- •Masonry sidewall have been constructed all along the channel on either side except for a few length near Marigowda road. The condition of the side walls is in good to moderate condition.
- •Large number of manholes have been constructed inside the channel near Arekempanahalli.
- •Large quantity of silt, large number of cables and BWSSB pipelines are noticed at the existing culvert location, near Marigowda road.
- •Drain reach from Marigowda road upto Primary drain joining location it is covered with RCC slab/BS slabs.
- •The width of the drain is reduced near Marigowda road and further near Hombegowdanagar.
- •Large quantity of silt and garbage dump is noticed inside the drain near Govt. girls junior college.
- •Utility lines laid across SWD is noticed at many places .
- •Minor cracks and cavities in the drain wall are noticed for a height of about 1.5 m. from the drain bed.
- •The bed level of this secondary drain and primary drain is almost at the same level

•Due to non functionality of tertiary drains and also floor level of residential buildings are below drain bed level, localised flooding problems are observed at many places. i.e., near Arekempanahalli and Wilson garden area.

2.6.2.7 R.R.M Roy Extn. Drain: (K109)

(Kanteerava stadium to Sudhamanagar),(Chainage length of about 2,000.00 m.)

This section of the drain starts from a place near Kanteerava stadium and confluence with the main drain near Sudhamanagar. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding Kanteerava stadium, Sampangiramnagar extn., Mission Road, Srinivasa Colony, Rajaram Mohan Roy extn. and Sudhamanagar forms part of contributory areas for this section.

- •This reach of drain is almost covered by RCC slab upto Sampangiramnagar and further with BS slabs upto primary drain joining location.
- •The width of the drain is reduced near Mission road and further near Sampangiramnagar.
- •The width of drainage channel is about 2.5 m to 5.0 m & depth varies from 1.4 m to 2 m., in this section.
- •The drain reach is taking a 90 ^o turn at two locations, which intern is reducing the velocity and intern causing backflow of water.
- •This stretch has residential buildings and commercial establishments on either side of the channel.
- •Large quantity of earth, silt deposition and garbage dump is noticed inside the drain.
- •Masonry sidewall have been constructed all along the channel on either side. The condition of the side walls is in good to moderate condition.

•Utility lines laid across SWD is noticed at many places.

•Due to non functionality of tertiary drains and also floor level of residential buildings are below drain bed level, localised flooding problems are observed at many places. i.e., near Sampangiramnagar Extn., Mission road and Raja Ram Mohan Roy Extn. Area.

•The bed level of this secondary drain and primary drain is almost at the same level

2.6.2.8 Lalbagh Drain: (K110)

(Lalbagh tank to J.C. Road), (Chainage length of about 625.00 m.)

This section of the drain starts from Lalbagh botanical garden and confluence with Koramangala valley main drain near Sudhamanagar. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding Mavalli, V.V. Puram, Upparahalli, Krumbigal Road and part of Sudhamanagar forms part of contributory area for this section.

•This reach of drain is almost covered except at few places.

- •The width of drainage channel is about 1.4 m to 2.0 m & depth varies from 1.2 to 1.6 m., in this section.
- •This stretch has dense residential buildings and commercial establishments on either side of the channel.

•Large quantity of earth, silt deposition and garbage dump is noticed inside the drain.

- •Masonry sidewall have been constructed all along the channel on either side. The condition of the side walls is in good to moderate condition.
- •The height of sidewall at many places are well below ground level, thereby allowing silt/earth to enter into drainage channel.

•Utility lines laid across SWD is noticed at many places.

•Minor cracks and cavities in the drain wall are noticed for a height of about 1.0 m. from the drain bed.

•Drain bed is in natural condition.

•The bed level of this secondary drain and primary drain is almost at the same level

2.6.2.9 Jayanagar Drain: (K111)

(Jayanagar 3rd Block to Lalbagh tank), (Chainage length of about 950.00 m.)

This section of the drain also starts from a place near Jayanagar 1st Block and confluence with Lalbagh botanical garden lake. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding part of Jayanagar 2nd Block, South End Circle area, Vijaya College, Kanakanapalya and Ashoka piller area forms part of contributory area for this section.

•This reach of drain is almost covered.

- •The width of drainage channel is about 0.8 m to 1.2 m & depth varies from 1.2 to 1.4 m., in this section.
- •This stretch has dense residential buildings and commercial establishments on either side of the channel.

•Large quantity of earth, silt deposition and garbage dump is noticed inside the drain.

- •Masonry sidewall have been constructed all along the channel on either side. The condition of the side walls is in good to moderate condition.
- •The drain reach opposite Vijaya college is covered with BS slabs.
- •Utility lines laid across SWD is noticed at many places.

•Minor cracks and cavities in the drain wall are noticed for a height of about 1.0 m.

from the drain bed.

•Drain bed is in natural condition.

2.6.2.10 Kalasipalya Drain: (K112)

(Paravathipura to Kumbaragundi), (Chainage length of about 715.00 m.)

This section of the drain starts from a place near Kalasipalya and confluence with the main drain near Kumbaragundi. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding Kalasipalya, Parvathipura, Journalist Colony & Kumbaragundi forms part of contributory areas for this section.

•This reach of drain is open drain.

•Large quantity of sewage flow is noticed inside the drain.

- •The width of drainage channel is about 4.0 m to 6.0 m & depth varies from 1.6 m to 2.0 m., in this section.
- •This stretch has dense residential buildings and commercial establishments on either side of the channel.
- •Large quantity of earth, silt deposition and garbage dumping is noticed inside the drain.
- •Masonry sidewall have been constructed all along the channel on either side. The condition of the side walls is in good to moderate condition.
- •The drainage channel flows across 7 culverts which are having very inadequate vent way.
- •Utility lines laid across SWD is noticed at many places i.e., near Kalasipalya cross Roads and A.M. Road.
- •The bed level of this secondary drain and primary drain is almost at the same level

STUP Consultants P. Ltd.

•Minor cracks and cavities in the drain wall are noticed for a height of about 1.0 m. from the drain bed.

•Drain bed is in natural condition.

•During reconnaissance survey, it was observed that except at few places service road land has been encroached all along the drain in Journalist colony.

2.6.2.11 Rajendranagar Drain: (K113)

(Koramangala 8th Block to Koramangala Indoor Stadium), (Chainage length of about 2,225 m.)

This section of the drain starts from a place near Royal Parikrama Centre in Koramangala 8th Block and confluence with the main drain near Akhila Karnataka Animal Rehab. Centre. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding Rajendranagar and Koramangala 8th Block forms part of contributory areas for this section.

•This reach of drain is open drain.

•Large quantity of sewage flow is noticed inside the drain.

- •The width of drainage channel is about 3.0 m to 4.5 m & depth varies from 1.2 to 1.8 m., in this section.
- •This stretch has dense residential buildings and few vacant lands on either side of the channel.
- •Large quantity of earth, silt deposition and garbage dumping is noticed inside the drain.
- •Masonry sidewall have been constructed all along the channel on either side. The condition of the side walls is in good to moderate condition.
- •The bed level of this secondary drain and primary drain is almost at the same level.

•Minor cracks and cavities in the drain wall are noticed for a height of about 1.4 m. from the drain bed.

•Drain bed is in natural condition.

2.6.2.12 Akkithimanahalli Drain: (K114)

(Divayashree Chambers to K.S.R.T.C. Training Centre), (Chainage length of about 1,100.00 m.)

This section of the drain starts from a place near Divayashree Chambers at Akkithimmanahalli and confluence with the main drain near K.S.R.T.C. Training centre. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding Shanthinagar & Akkithimanahalli forms part of contributory areas for this section.

•This reach of drain is covered with RCC slab in the initial reach and then it is open drain.

•Large quantity of sewage flow is noticed inside the drain.

- •The width of drainage channel is about 1.6 m to 2 m & depth varies from 1.2 to 1.8 m., in this section.
- •This stretch has dense residential buildings on either side of the channel.
- •Large quantity of earth, silt deposition and garbage dumping is noticed inside the drain.
- •Masonry sidewall have been constructed all along the channel on either side. The condition of the side walls is in good to moderate condition.
- •BWSSB Manholes that have been constructed inside the channel are noticed at many places.
- •The bed level of this secondary drain and primary drain is almost at the same level

•Drain bed is in natural condition.

2.6.3 OBSERVATIONS DURING SITE INVESTIGATION OF MAIN DRAIN IN TAVAREKERE VALLEY (K2):

Tavarekere valley nalla is divided into 7 segments, for ease of assessment. The details of each segment is as mentioned below :

Segment - 1 (Chainage 0.00 m to 1,000.00 m.)

(From Sanatorium Road near NIMHANS hospital complex upto Mundukar Fire Service College, near Jayanagar East Block)

This section of the drain starts from Sanatorium Road near NIMHANS hospital complex and continues upto Mundukar Fire Service College, near Jayanagar East Block. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding NIMHANS hospital, Byrasandra and Jayanagar East block areas forms the part of contributory areas for this section.

- •This reach of storm drain is an open drain.
- •The width of drainage channel varies from 2.5 m to 4.5 m & depth varies from 1.2 to 1.7 m.
- •This Drain reach is in natural condition in the hospital complex and further S.S.M. Masonry walls have been constructed on either sides, the condition of the side walls is in good to moderate condition.
- •Large quantity of silt and vegetal growth is observed inside the drain.

Segment - 2 (Chainage length of about 1,000.00 m to 2,000.00 m.)

(From Mundukar Fire Service College, near Jayanagar East Block upto Tank bund road near Bismillahanagar).

This section of the drain starts from Mundukar Fire Service College, near Jayanagar East Block and continues upto Tank bund road near Bismillahanagar. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding Suddauguntepalya and Bhavaninagar area form the part of contributory areas for this section.

•This reach of drain is an open drain.

- •Recently during development of park new SSM walls have been constructed in this reach from Bannerughatta road upto tank bund road, it is in good condition and existing drain bed is in natural condition.
- •Large quantity of sewage flow is observed.
- •Secondary storm drain K207 from Krishnappa garden joins the main drain near Mundukar Fire Service College.
- •The width of drainage channel varies from 3.0 m to 5.0 m & depth varies from 1.3 m. to 1.7 m.
- •Minor cracks and cavities in the drain wall are noticed for a height of about 0.6 m. from the drain bed.

Segment - 3 (Chainage length of about 2,000.00 m to 3,000.00 m.)

(From Tank bund road near Bismillahanagar upto Brindavannagar).

This section of the drain starts from Tank bund road near Bismillahanagar and continues upto Brindavannagar. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding Guruppanapalya, Bismillahanagar and Tavarekere area form the part of contributory areas for this section.

•This reach of drain is an open drain.

•Floor level of residential buildings is much below the drain bed level in this reach.

- •SSM masonary walls have been constructed upto Bismillahanagar and further, it is in natural condition and residential building walls itself is acting as retaining wall.
- •Large no. of dyeing industries that are situated along side of the drain are discharging toxic liquid waste directly into SWD.

•Natural alignment of the drain is drastically altered near Bismillahanagar.

•Drain gradient is very minimum in this reach.

- •Drain width is drastically reduced near Bismillahanagar.
- •The drain reach is taking a 90 ^o turn at two locations, which intern is reducing the velocity and intern causing backflow of water.
- •Large quantity of sewage flow is observed.
- •Manholes and sewer pipelines are observed inside the drainage channel in this reach.
- •Secondary storm drain K206 from Guruppanapalya and another secondary drain K205 from BTM layout joins this main drain near Lakshmi theater at Tavarekere. The crosssectional area of the primary drain is very narrow, near the confluenceing location.
- •Large number of sewer outlets directly discharging into SWD is observed in this reach.
- •The width of drainage channel varies from 5 m to 7 m & depth varies from 1.7 m. to 2 m. upto Lakshmi theatre and further the width of the drain varies from 8 m. to 10 m. and depth varies from 1.8 m. to 2.2 m.
- •Minor cracks and cavities are noticed in the drain wall for a height of about 0.6 m. from the drain bed.

Segment - 4 (Chainage length of about 3,000.00 m to 4,000.00 m.)

(From Brindavannagar upto 36th Main Road, BTM Layout).

This section of the drain starts from Brindavannagar and continues upto 36th Main Road, BTM Layout. As per the preliminary investigations, it was noticed that localities

surrounding Maruthi Extn., Venkateshwara layout, Ramaiah garden, Mudduramanagar and BTM layout 1st Stage area form the part of contributory areas for this section.

•This reach of drain is an open drain.

•Floor level of residential buildings is much below the drain bed level in this reach.

•SSM masonry walls have been constructed and it is moderate condition

•Natural alignement of the drain is drastically altered near Ramaiah garden.

- •The width of the drainage channel is drastically reduced near Ramaiah garden (i.e., near K.P.N Travels bus depot.)
- •Large no. of residential building walls are resting over the drain wall is noticed in this reach
- •Large no. of dyeing industries that are situated along side of the drain are discharging large quantity of toxic liquid wastes, directly into SWD.
- •Drain gradient is very minimum in this reach.

Large quantity of sewage flow is observed.

•Cavities and minor cracks are observed in the drain wall at many places in this reach.

- •Large number of sewer outlets directly discharging into SWD is observed in this reach.
- •The width of drainage channel varies from 7.0 m to 9.0 m & depth varies from 1.8 m. to 2.2 m.
- •Minor cracks and cavities in the drain wall are noticed for a height of about 0.5 m. from the drain bed.

Segment - 5 (Chainage length of about 4,000.00 m to 5,000.00 m.)

(From 36th Main Road, BTM Layout upto Fern hill garden apartments near HSR Layout).

This section of the drain starts from 36th Main Road, BTM Layout and continues upto Fern hill garden apartments near HSR Layout. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding Madivala, Chikka Madivala, Dollar Scheme colony and portion of HSR layout area form the part of contributory areas for this section.

•This reach of drain is an open drain.

•Floor level of residential buildings is much below the drain bed level in this reach.

•SSM masonary walls have been constructed and it is moderate condition and also under the flyover project B.D.A. has constructed new RCC walls on either side.

•Natural alignement of the drain is drastically altered near Madivala

•The width of the drainage channel is drastically reduced near Chikka Madivala

•Large no. of residential building walls are resting over the drain wall is noticed in this reach

•Secondary storm drains K204 from Madivala tank joins the main drain in this reach near C.S.B. Junction.

•Large quantity of toxic industrial effluents is being discharged into the storm drain by the industries situated in Bommanahalli industrial area.

•Drain gradient is very minimum in this reach.

·Large quantity of sewage flow is observed.

•Cavities and minor cracks are observed in the drain wall at many places in this reach.

·Large number of sewer outlets directly discharging into SWD is observed in this

reach.

- •The width of drainage channel varies from 10.0 m to 14.0 m & depth varies from 2.0 m. To 2.4 m.
- •Minor cracks and cavities in the drain wall are noticed for a height of about 0.5 m. from the drain bed.

Segment - 6 (Chainage length of about 5,000.00 m to 6,000.00 m.)

(From Fern hill garden apartments near H.S.R .Layout upto H.S.R. Layout near Agara tank).

This section of the drain starts from Fern hill garden apartments and continues upto H.S.R. Layout near Agara tank. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding H.S.R. layout sector 4, 6 & 7 areas, Teachers colony, Venkatapura form the part of contributory area for this section.

•This reach of drain is an open drain.

- •Secondary storm drains K201, K202 & K203 joins the main drain in this reach near H.S.R. layout Sector 7.
- •Recently Agara tank restoration project has been taken up by B.D.A. Under this project B.D.A. has constructed size stone masonry wall on both side to segregate sewage from entering the lake.

•SSM masonry walls have been constructed and it is good condition.

•Large quantity of toxic industrial effluent & sewage flow is being noticed in the storm drain.

•Drain bed is in natural condition.

•Drain gradient is very minimum in this reach.

•The width of drainage channel varies from 13.0 m to 16.0 m & depth varies from 1.6

m. To 2.0 m.

•Cavities and minor cracks are observed in the drain wall at many places in this reach.

Segment - 7 (Chainage length of about 6,000.00 m to 7,625.00 m.)

(From H.S.R. Layout near Agara tank upto a location near Bellandur tank).

This section of the drain starts from H.S.R. Layout near Agara tank and continues upto a location near Bellandur tank. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding Teachers colony and Venkatapura form the part of contributory area for this section.

•This reach of drain is an open drain.

•Recently Agara tank restoration project has been taken up by B.D.A.. Under this project B.D.A. has constructed size stone masonry wall on both side upto Sarjapura road near Jakasandra. Further, from Sarjapura road there is no defined alignment of storm drain upto Bellandur tank.

•Large quantity of vegetal growth is noticed beyond Sarjapura Road.

- •Large quantity of toxic industrial effluent & sewage flow is being noticed in the storm drain.
- •Drain bed is in natural condition.
- •Drain gradient is very minimum in this reach.
- •The width of drainage channel varies from 18.0 m to 24.0 m & depth varies from 1.8 m. To 2.4 m.

•Cavities and minor cracks are observed in the drain wall upto Sarjapur Road at many places in this reach.

2.6.4 OBSERVATIONS DURING SITE INVESTIGATION OF SECONDARY DRAINS IN TAVAREKERE VALLEY:

STUP Consultants P. Ltd.

2.6.4.1 Vanaganahalli Drain: (K201)

(Vanaganahalli to Agara tank), (Chainage length of about 1,350.00 m.)

This section of the drain starts from a place near Vanaganahalli and confluence with the main drain near Agara tank. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding HSR layout sector 4 & 3 forms part of contributory area for this section.

•This reach of drain is an open drain.

•Many places sewage stagnation inside the drain is noticed.

- •The width of drainage channel is about 2.5 m to 5.0 m & depth varies from 1.4 m to 1.8 m., in this section.
- •This stretch has sparse developed residential buildings and few open lands on either side of the channel.

Large quantity of earth, silt deposition and garbage dump is noticed inside the drain.
Masonry sidewall have been constructed all along the channel on either side. The condition of the side walls is in good to moderate condition.

- •The height of sidewall at many places are well below ground level, thereby allowing silt/earth to enter into drainage channel.
- •Number of RCC slab culverts are noticed in this reach, and they are of single span in nature and also in good condition.
- •Cavities and minor cracks are observed in the drain wall at many places in this reach.
- •Minor cracks and cavities in the drain wall are noticed for a height of about 0.5 m. from the drain bed.

2.6.4.2 Yellukunte Drain: (K202)

(Yellukunte to Venkatapura), (Chainage length of about 950.00 m.)

This section of the drain starts from a place near H.S.R layout 7th Sector on Bommanahalli Road near Mangammanapalya and confluences with main drain near H.S.R layout 5th Sector. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding H.S.R layout Sector 7th forms part of contributory areas for this section.

•This reach of drain is an open drain.

- •The width of drainage channel is about 2.0 m to 4.0 m & depth varies from 1.2 m to 1.75 m., in this section.
- •This stretch has residential buildings, service road and few vacant lands on either side of the channel.

•Many places sewage stagnation inside the drain is noticed.

- •Large quantity of earth, silt deposition and garbage dumping is noticed inside the drain.
- •Masonry side wall have been constructed all along the channel on either side. The condition of the side walls is in good condition.
- •In many places the height of the retaining wall is well below the ground level, intern allowing earth and silt to enter into the drain.
- •Large quantity of sewage is flowing inside the drain.
- •Number of RCC slab culverts are noticed in this reach, and they are of single span in nature and also in good condition.
- •The height of sidewall at many places are well below ground level, thereby allowing silt/earth to enter into drainage channel.
- •Cavities and minor cracks are observed in the drain wall at many places in this reach.
- •Minor cracks and cavities in the drain wall are noticed for a height of about 0.5 m. from the drain bed.

2.6.4.3 H.S.R. Layout Drain: (K203)

(Crompton Greeves to Outer Ring Road), (Chainage length of about 1,200.00 m.)

This section of the drain starts from a place near H.S.R layout Sector VI on Bommanahalli Road and confluences with main drain near H.S.R layout VI Sector. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding Mangammanapalya and H.S.R layout, Sector 6th forms part of contributory area for this section.

•This reach of drain is an open drain.

- •The width of drainage channel is about 1.0 m to 3.5 m & depth varies from 0.8 m to 1.5 m., in this section.
- •This stretch has residential buildings, service road and many vacant lands on either side of the channel.

•Many places sewage stagnation inside the drain is noticed.

- •Large quantity of earth, silt deposition and garbage dumping is noticed inside the drain.
- •Masonry sidewall have been constructed all along the channel on either side. The condition of the side walls is in good condition.
- •Number of RCC slab culverts are noticed in this reach, and they are of single span in nature and also in good condition.
- •In many places the height of the retaining wall is well below the ground level, intern allowing earth and silt to enter into the drain.
- •Large quantity of sewage is flowing inside the drain.
- •The height of sidewall at many places are well below ground level, thereby allowing silt/earth to enter into drainage channel.

•Cavities and minor cracks are observed in the drain wall at many places in this reach.

•Minor cracks and cavities in the drain wall are noticed for a height of about 0.5 m. from the drain bed.

2.6.4.4 Madivala Drain: (K204)

(Near Madivala tank to Hosur Road), (Chainage length of about 705.00 m.)

This section of the drain starts from a place near Someshwara colony at B.T.M layout 2nd Stage and confluences with main drain near Central silk board. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding Someshwara colony & B.T.M layout 2nd Stage forms part of contributory area for this section.

•This reach of drain is an open drain.

- •The width of drainage channel is about 2.5 m to 4.0 m & depth varies from 1.2 m to 1.5 m., in this section.
- •This stretch has residential buildings, vacant lands on one side & outer ring road on the other side.
- •Large quantity of earth, silt deposition and garbage dumping is noticed inside the drain.
- •Masonry sidewall have been constructed all along the channel on either side. The condition of the side walls is in good to moderate condition.
- •The drain reach infront of central silk board is covered with RCC slab.
- •Many culverts with RCC hume pipes are noticed in this reach.
- •The height of sidewall at many places are well below ground level, thereby allowing silt/earth to enter into drainage channel.
- •Minor cracks and cavities in the drain wall are noticed for a height of about 1.0 m.

from the drain bed.

2.6.4.5 Tavarekere Drain: (K205)

(Muddurammanagar to Bismillahanagar), (Chainage length of about 525.00 m.)

This section of the drain starts from a place near B.T.M layout and confluences with main drain near Bismillahanagar. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding Vysya bank colony, KEB colony, Maruthi layout, Muddurammanagar and portion of Guruppanapalya, and Tavarekere forms part of contributory areas for this section.

•This reach of drain is an open drain.

•The width of drainage channel is about 3.0 m to 5.0 m & depth varies from 1.0 m to 1.5 m., in this section.

•This stretch has residential buildings on either side of the channel.

- •Large quantity of earth, silt deposition and garbage dumping is noticed inside the drain.
- •Masonry sidewall have been constructed all along the channel on either side. The condition of the side walls is in moderate condition.
- •The height of sidewall at many places are well below ground level, thereby allowing silt/earth to enter into drainage channel.
- •Large number of sewer outlets directly discharging into SWD is observed in this reach.
- •Cavities and minor cracks are observed in the drain wall at many places in this reach.
- •Minor cracks and cavities in the drain wall are noticed for a height of about 1.0 m. from the drain bed.

2.6.4.6 Guruppanapalya Drain: (K206)

(Tayappanahalli to Bovi colony), (Chainage length of about 1,245.00 m.)

This section of the drain starts from a place near Tayappanahalli and confluences with main drain near Bovi colony. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding Guruppanapalya, Tayappanahalli, Bovi colony and Bismillahanagar forms part of contributory area for this section.

- •This reach of drain is an open drain.
- •The width of drainage channel is about 3.0 m to 8.0 m & depth varies from 1.6 m to 2.2 m., in this section.
- •This stretch has residential buildings and commercial establishments on either side of the channel.
- •Large quantity of sewage flow, earth, silt deposition and garbage dump is noticed inside the drain.
- •Masonry sidewall have been constructed all along the channel on either side. The condition of the side walls is in good to moderate condition.
- •Utility lines laid across SWD is also noticed at many places in Bismillahanagar.
- •Large number of sewer outlets directly discharging into SWD is observed in this reach.
- •Cavities and minor cracks are observed in the drain wall at many places in this reach.
- •Minor cracks and cavities in the drain wall are noticed for a height of about 1.0 m. from the drain bed.

2.6.4.7 Krishnappa Garden Drain: (K207)

(Bairasandra Extn. to Bannerghatta Road), (Chainage length of about 1,225 m.)

This section of the drain starts from a place near Bairasandra Extn. and confluences with main drain near Bannerghatta Road. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding L.I.C colony, Bairasandra Extn., part of Tilaknagar and Krishnappa Garden forms part of contributory area for this section.

- •This reach of drain is open drain except at few places near Krishnappa garden.
- •The width of drainage channel is about 1.5 m to 6.0 m & depth varies from 1.2 m to 1.8 m., in this section.
- •This stretch has residential buildings, commercial establishments and vacant lands on either side of the channel.
- •Large quantity of sewage flow, earth, silt deposition and garbage dump is noticed inside the drain.
- •Masonry sidewall have been constructed all along the channel on either side,. except for a few length near fire service college. The condition of the side walls is in good to moderate condition.
- •Cavities and minor cracks are observed in the drain wall at many places in this reach.
- •Minor cracks and cavities in the drain wall are noticed for a height of about 0.5 m. from the drain bed.

2.6.4.8 Law College Drain: (K208)

(Tilaknagar to Krishnappa Garden), (Chainage length of about 425.00 m.)

This section of the drain starts from a place near Tilaknagar police station and confluences with main drain near Krishnappa Garden. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding part of Tilaknagar, canara bank colony and Krishnappa Garden forms part of contributory area for this section.

•This reach of drain is almost covered with BS slabs.

- •The width of drainage channel is about 1.5 m to 4.0 m & depth varies from 1.6 m to 2.2 m., in this section.
- •This stretch has residential buildings and commercial establishments on either side of the channel.

- •Large quantity of sewage flow, silt deposition and garbage dump is noticed inside the drain.
- •Masonry sidewall have been constructed all along the channel on either side. The condition of the side walls is in good condition.
- •The drain reach near canara bank apartments is covered with RCC slab.

2.6.4.9 J.P. Nagar Drain: (K209)

(Jayanagar 4th Block to C.S.B. Junction), (Chainage length of about 9,500.00 m.)

This section of the drain starts from a place near Jayanagar 4th block and flows by the side of Madivala tank and joins Tavarekere valley primary drain near central silk board. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding Jayanagar 4th block, Sarakki layout, J.P. Nagar, Dollars colony and also Kodichikkanahalli, N.G.R. Layout and Hosur road adjoining areas in Bommanahalli CMC area forms part of contributory area for this section.

- •The width of drainage channel is about 3.0 m. To 12.0 m. & depth varies from 1.2 m to 2.2 m., in this section.
- •This stretch has residential buildings, slum areas, tank bund and few open lands on either side of the channel.

•Secondary drain from Puttenahalli (K210) joins this drain near Dollars colony.

•Large quantity of sewage flow, silt deposition and garbage dump is noticed inside the drain.

•Masonry sidewall have been constructed all along the channel on either side i.e, upto

Dollars colony and further it is in natural condition. The condition of the side walls is in good condition.

- •Existing drain near Sarakki layout 4th Phase temple is taking a sharp bend, which intern causes backflow of water in the upstream
- •Cavities and minor cracks are observed in the drain wall at many places in this reach.
- •Minor cracks and cavities in the drain wall are noticed for a height of about 1.0 m. from the drain bed.
- •Drain bed is in natural condition.
- •Existing drain reach near Pride apartment upto Bannerghatta road is in natural condition and also width is very less, which requires widening.
- •Existing drain reach near Ranka apartment is covered, which needs to be opened and widened.
- •Large number of Manholes has been constructed inside storm drain.
- •Alignment of drain needs to be altered at many places.
- •Large quantity of industrial effluent is being discharged into storm drain from Bommanahalli CMC area.
- •Over flow weir of Madivala tank near KAS officers colony is connected to this secondary storm drain.
- •Large quantity of raw sewage is being directly discharged into storm drain from the adjoining slum area near N.G. R. layout in Bommanahalli CMC area.
- •Storm drain flows inside an industrial premises near N.G. R. Layout and further connects with road side drain at Hosur road.

2.6.4.10 Puttenahalli Drain: (K210)

(Puttenahalli to Dollars colony), (Chainage length of about 1,700.00 m.)

This section of the drain starts from a place near Sarakki layout and flows by the side of Madivala tank and joins Tavarekere valley primary drain near central silk board. As per the preliminary investigations made by the consultants, it was noticed that localities surrounding Sarakki layout, J.P. Nagar, Dollars colony and also Kodichikkanahalli, N.G.R. Layout and Hosur road adjoining areas in Bommanahalli CMC area forms part of contributory area for this section.

- •The width of drainage channel is about 1.6 m. To 3.0 m. & depth varies from 1.4 m to 2.0 m., in this section.
- •This stretch has residential buildings and few open lands on either side of the channel.
- •Large quantity of sewage flow, silt deposition and garbage dump is noticed inside the drain.
- •Masonry sidewall have been constructed all along the channel on either side. The condition of the side walls is in moderate condition.
- •Cavities and minor cracks are observed in the drain wall at many places in this reach.
- •Minor cracks and cavities in the drain wall are noticed for a height of about 1.0 m. from the drain bed.

•Drain bed is in natural condition.

2.7 Condition Survey of Cross Drains :

During reconnaissance survey, the existing cross drains constructed across both primary and secondary drains has been assessed for its structural and hydrological conditions. The details of these existing cross drains like type of structure, type of slab, abutment/piers, service lines near the structure, condition of parapet wall etc., have been collected and enclosed in Volume II of this report.

2.8 OBSERVATIONS DURING SITE INVESTIGATION OF LOW LYING AREAS IN KORAMANGALA VALLEY:

During reconnaissance survey of Koramangala valley, a detailed assessment of site condition, reason for flooding and possible mitigative measures to overcome the flooding problems in low lying areas have been identified and the same is discussed in the subsequent sections.

The list of critical low lying areas identified in Koramangala valley is as mentioned in Table 2.3 and same is depicted in Figure 2.4.

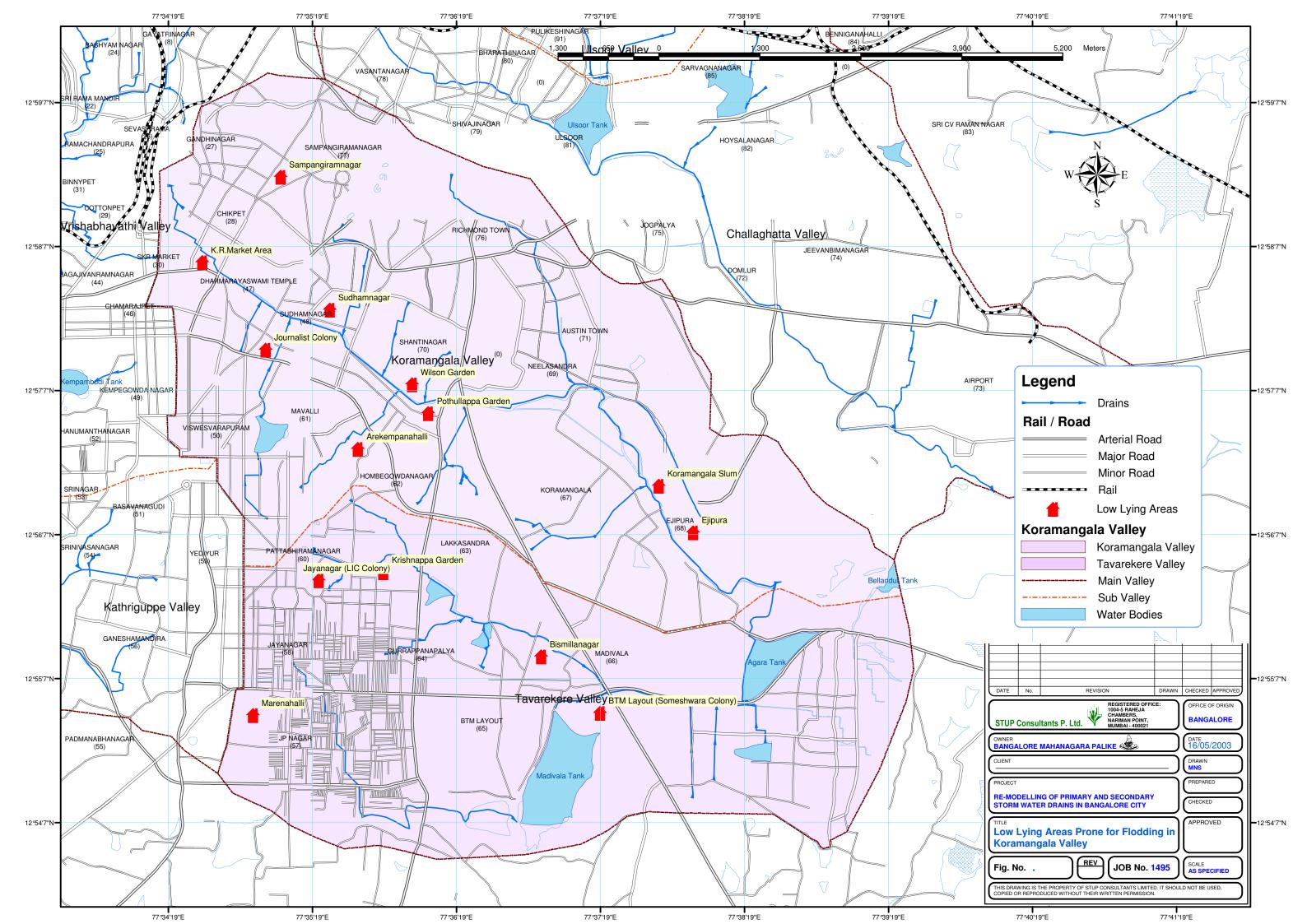

SI.No.	Location	Valley	BMP Division
1.	Sudhamanagar	Koramangala Main Valley	East
2.	Shanti Nagar	Koramangala Main Valley	East
3.	Sampangiram Nagar	Koramangala Main Valley	East
4.	Wilson Garden	Koramangala Main Valley	South
5.	Siddapura	Koramangala Main Valley	South
6.	Laxman Rao Slum	Koramangala Main Valley	East
7.	Ejipura	Koramangala Main Valley	East
8.	S.T. Bed, Koramangala	Koramangala Main Valley	East
9.	L.I.C. Colony	Tavarekere Valley	South
10.	Bismillahnagar	Tavarekere Valley	South
11.	BTM Layout Dollars	Tavarekere Valley	South

TABLE 2.3List of Critical Low Lying Areas in Koramangala Valley

2.8.1 Journalist Colony & Sudhamanagar

Journalist Colony & Sudhamanagar areas are situated in Koramangala main valley. Koramangala main valley primary storm drain (K100) and another secondary storm drain (K112) which starts from Paravathipura flows through Journalist colony & Kalasipalya and cause localised flooding problem in these regions for the reasons mentioned below.

Reasons for flooding:

- •Due to large scale encroachment, natural alignment of existing primary & secondary storm drain has been altered.
- •Foundation / Floor level of residential buildings at few places in these layouts is much below the existing drain bed level.
- •Cross drainage's constructed across secondary SWD near Journalist colony main road are all having inadequate vent sizes.
- •Large number of utility crossings are noticed near the culvert locations.
- •Existing primary drain bed slope from J.C. Road upto Lalbagh Road is almost flat.
- •Number of commercial buildings constructed over SWD near J.C. Road is causing hindrance for maintenance of SWD.
- •Public toilet blocks constructed over SWD (without proper drainage arrangement) between J.C. Road & Lalbagh Road is causing serious problem in that region and their support structures are obstructing free flow of water.
- •Improper drainage facilities.
- •Large quantity of vegetal growth is noticed inside the existing storm drain near Lalbagh road.
- •Large quantity of sewage flow is noticed inside the existing storm drain.
- •Large quantity of debris and garbage dump is noticed at many places inside the existing SWD.
- •Culvert/bridge constructed across Koramangala main valley primary SWD (opposite to KSRTC Bhavan) near K.H. Double Road is having very inadequate vent size causing back flow of water.

2.8.2 Akkithimanahalli, Near Shanthinagar:

Akkithimanahalli is situated near Shanthinagar in Koramangala main valley. Koramangala main valley secondary storm drain (K114) flows through this locality and due to reasons mentioned below, it is causing localised flooding problems in this region,

Reasons for Flooding

- •This reach of drain is almost covered with RCC slab and also not many openings/provisions made in the slab for the surface water to enter into the drain.
- •Large number of manholes that have been constructed inside the storm drain for a height of about 1.2 m. from the bed level is drastically obstructing the flow.
- •Large quantity of silt/earth is noticed inside the drain.
- •Existing tertiary drain in this locality are inadequate and not functioning upto the required level.
- •Large quantity of silt is observed inside the drain near the church area.
- •The width of the drain is reduced at few places.

2.8.3 Sampangiramnagar, Near Raja Ram Mohan Roy Extension

Sampangiramnagar is situated near Mission Road in Koramangala main valley. Koramangala main valley secondary storm drain (K109) flows through this locality and due to reasons mentioned below, it is causing localised flooding problems in this region,

Reasons for Flooding

•Drain reach near this locality is almost covered.

- •Foundation / Floor level of residential buildings in this layout is much below the drain bed level.
- •Existing tertiary drain in this locality are inadequate and not functioning upto the required level.
- •The alignment of the drain at nearly two location is taking a 90 degrees turn, which intern is reducing the flow velocity and consequently resulting in flooding on the upstream side.
- •The size of the tertiary drain coming from Sampangiramnagar, 4th main road and joining the secondary drain (K109) at back side of Bangalore oncology hospital is very insufficient, which intern causing localised flooding problems in adjoining residential area.

2.8.4 Siddapura & Wilson Garden

Siddapura & Wilson garden area are situated in Koramangala main valley. A secondary storm water drain (K108) starting from Siddapura flows through Someshwarapura, Siddapura, Wilson garden and Hombegowdanagar before confluencing with Koramangala valley primary storm drain (K100) near NGO's Colony.

This stretch has residential buildings and horticulture nurseries on either side of the channel. Due to improper drainage arrangement and also for other reasons mentioned below these localities gets inundated with water even for minimum intensity of rainfall.

Reasons for flooding:

•Natural course of existing SWD alignment has been changed due to encroachment / construction of residential building.

•Improper drainage arrangement.

- •Floor level of residential buildings are below the SWD drain HFL, and also in some cases even below the drain bed level.
- •Most of the tertiary drains / road side L shaped drains are not connected to secondary drain.
- •Under ground sewerage system is not extended for the entire locality.
- In most of the locations, the tertiary drain bed level is much below the bed level of the secondary drain.
- •Due to encroachment, the width of secondary SWD drain has been reduced near Marigowda road.
- •Large quantity of solid waste stacked adjacent to SWD by the horticulture nursery owners finds its way into storm drain.
- •Due to silt deposition, garbage dump and sewage flow, the carrying capacity of the existing storm drain is reduced.
- •Tertiary drains laid in bylanes are inadequate to cater for both sewage and runoff water.

2.8.5 Lakshman Rao Slum

Lakshman Rao slum is situated near Adugodi in Koramangala main valley. Dense hutment development is noticed on either side of the drain. Due to various reasons mentioned below, the above referred primary drain before joining Bellandur tank is posing serious flooding problems in these localities.

•Due to large scale encroachment, natural alignment of existing primary storm drain has been altered inside the slum area

•Foundation / Floor level of hutments / residential buildings in this layout is much below the existing drain bed level.

•Existing storm drain is in natural condition without any side walls.

•Large quantity of silt and garbage dumps are noticed inside the drain.

•Large quantity of raw sewage is being directly discharged into storm drain.

•Sewerage system is not extended for the entire locality.

•Due to dense development of hutments, maintenance of drains in highly impossible in this reach.

•Existing primary drain width has been drastically reduced inside the slum area.

•Existing primary drain bed slope from Hosur bridge upto Bellandur tank is almost flat.

2.8.6 Ejipura, Koramangala & S.T. Bed Area

Koramangala, Ejipura & S.T. Bed areas are situated in Koramangala main valley. These localities comprises of dense residential buildings and commercial establishments on either side of the drain. Due to various reasons mentioned below, the above referred primary drain before joining Bellandur tank is posing serious flooding problems in these localities.

Reasons for flooding:

- •Due to large scale encroachment, natural alignment of existing primary storm drain has been altered inside National Games Complex.
- •Foundation / Floor level of residential buildings in this layout is much below the existing drain bed level.
- •Existing primary drain width from Viveknagar bridge upto Bellandur tank has been drastically reduced from 22 m. to 9 m.

- •Existing primary drain bed slope from Viveknagar bridge upto Bellandur tank is almost flat.
- •Large Nos. of RCC columns constructed inside the storm drain near National games village is obstructing free flow of water.
- Nos. of approach bridges constructed and utility crossing laid across existing SWD by apartment owners in Koramangala layout is obstructing free flow of water.
 Improper drainage facilities.
- •Large quantity of sewage flow is noticed in the existing storm drain including sewage discharge from National Games Complex.
- •Large quantity of debris and garbage dump is noticed at many places inside the SWD.
- •At some places drain does not have side walls and is in natural condition which intern reduces the velocity of flow in the drain.
- •Ashwini Layout, S.T. Bed etc., are at a level lower than the drain HFL. The inadequate drain overflows in to these areas and the storm water from these area does not get drained when the primary drain is flowing full.

2.8.7 L.I.C. Colony, Near Krishnappa Garden

L.I.C. Colony is situated near Jayanagar 3rd Block in Tavarekere valley. Tavarekere valley secondary storm drain (K207) flows through this locality and due to reasons mentioned below, it is causing localised flooding problems in this region,

Reasons for Flooding

•Existing drain reach in this locality is almost covered and also in some places the road formation level is equal or lower than the drain bed level, which intern causes backflow of water from the drains onto the road surface and cause localised flooding problems in front of residential buildings.

- •Drain reach near fire service college is in natural condition and also it is not properly linked with Tavarekere valley main drain. Which intern is causing stagnation of water and causing heading up of water upstream.
- •Large quantity of earth has been dumped and natural alignment of drain has been altered to form a new residential layout, near fire service college.
- •Drain width is drastically reduced near the joining point of this secondary drain and primary drain.

2.8.8 Bismillahanagar & Maruthinagar, Near Tavarekere

Bismillahanagar & Maruthinagar is situated in Tavarekere valley. Wherein Tavarekere valley primary storm drain (K200) flows through this locality. The topography of this area is sloping from North-West towards South -East. About 15% length of the drain is passing through open area and balance 85% length of the drain is passing through thickly populated area and dense built residential area and due to reasons mentioned below, it is causing localised flooding problems in this region,

Reasons for Flooding

- •Natural alignment of storm drain has been altered in this region.
- •Foundation / Floor level of residential buildings in this layout is much below the drain bed level.
- •The alignment of the drain at nearly two location is taking a 90 degrees turn, which intern is reducing the flow velocity and consequently resulting in localised flooding in the region.
- •The width of storm water drain is very inadequate, since it is drastically reduced to 1.5 m. from 4.5 m near Bismillahnagar.

- •The existing storm water drain has been encroached and houses have been constructed by residents.
- •The existing culverts constructed across storm water drain in Bismilla Nagar and Balaji Nagar is obstructing free flow.
- •All the road side drains and ground profiles are sloping towards the Bismillah nagar and Balajinagar forms valley and the bed slope downstream is not adequate.
- •Large quantity of raw sewage is being discharged into the storm drain in this locality.
- •Large quantity of garbage and solidwaste materials is being dumped into storm drain by the residents.

2.8.9 B.T.M. Layout – Dollars Scheme Colony, Near Central Silk Board

B.T.M. Layout – Dollars Scheme Colony is situated in Tavarekere valley. Wherein Tavarekere valley primary storm drain (K200) flows through this locality and due to reasons mentioned below, it is causing localised flooding problems in this region,

Reasons for Flooding

- •Foundation / Floor level of residential buildings in this layout is much below the drain bed level.
- •Large quantity of raw sewage is being observed in the storm drain.
- •Large quantity of garbage and solidwaste materials is being dumped into storm drain by the residents.
- •The drain width is reduced near central silk board training centre.
- •The culvert constructed at central silk board junction is having a very inadequate vent size thereby reducing the carrying capacity of the drain.

•Existing tertiary drain in this locality are inadequate and not functioning upto the required level.

2.9 Existing Operation and Maintenance Practice

During the recent years BMP has undertaken reconstruction of drain walls and cross drains at some strategic locations to overcome the present flooding situations and also during the last two years BMP has undertaken a large scale program of desilting of storm water drains and solid waste management.

BMP has set up Emergency squads with truck mounted pumping arrangements, to be available round the clock. For each zone, emergency telephone connections have been setup to overcome any eventuality.

BMP has also taken up projects like improvements of conservancies, foot paths, rejuvenation of parks, Swacha Bangalore and Nirmala Bangalore etc., this intern has reduced the risk of accumulation of silt and solid waste at tertiary drain level to a certain extent and also intern enhances the aesthetic appearance of the city.

2.10 Quantity and Quality of Sewage

The watershed area within the city is having the major problem of domestic sewage and sullage getting into storm water drains contributing to the pollution of the Bellandur lake. Indiscriminate dumping of solidwaste in the storm water drains is yet another cause for the pollution of the Bellandur lake.

The dry weather flow of sewage flow in Koramangala and Tavarekere valley is as mentioned in the table below Table:

Name of Valley	Min flow (MLD.)	Avg. Flow (MLD.)	Max. Flow (MLD.)
Koramangala Valley	33.78	54.11	67.99
Tavarekere Valley	52.42	66.18	80.58

Results of Dry	v Weather Flow	Measurements in C	Open Drains
	,		

Source: M/s. Pai Enron Technologies systems limited Bangalore.

Concentration of Pollutants in Dry Weather Flow Drains

Parameters	Bellandur tank	Agara tank
BOD ₅	388	381
SS	896	624
DO	Nil	Nil

CHAPTER 3

STORM WATER DRAINAGE SYSTEM DESIGN AND ANALYSIS

3.1 INTRODUCTION:

Application of concepts and methodologies of drainage design requires establishment of design parameters of the system considered for the design. Such parameters specifies the system performance with regard to various inputs. While the design concepts and methodologies are fairly general, design parameters are site specific. Depending on the design objectives and the availability of supporting data, different design parameters may apply to each region, location and project. Various parameters that are considered and analysed are discussed here under:

3.2 DESIGN CRITERIA:

These include planning horizon, design period, catchment physical parameters, process parameters and meteorological parameters.

3.2.1 PLANNING HORIZON:

Ideally planning of storm drainage works may be implemented in two levels – planning for short term and the long term. Planning for short term considers the proposed development plans for immediate mitigative measure. Information pertaining to development plan includes population trends, comprehensive land use and zoning plan, location of future roads, airports, and industrial area which may affect the drainage design as well as jurisdictional division and financial arrangement. The long term planning process reflects the ultimate development anticipated over a period of time which may be as long as 25 to 50 years. But, these may not be feasible for well developed cities, to accommodate higher size drains in already developed layouts. Therefore, one best alternative approach is to backfit the drain capacity with respect to the prevailing site conditions and arrive at the suitable return period, which is acceptable to the implementing agency.

3.2.2 DESIGN PERIOD:

Planning horizon reflects the envisaged land use projected for a certain number of years, the design period of drainage system indicates the expected levels of protection against such phenomena as flooding, health hazard or deterioration in the quality of receiving waters. Besides the desired level of protection, the design period depends on construction cost and damage (losses) resulting from system failures. The planning horizon may be linked to the longest design life of structures under design. Thus, while there is only one planning horizon for a drainage area, the design period may differ for the individual system components.

The TOR specifies that the acceptable design standards commensurate with the anticipated runoff volume in the next 20 years be determined in Phase-I. Thus, it is considered that the adequacy of the existing primary and secondary storm drains be studied, for the anticipated runoff rate over the next 20 years.

But, after consecutive discussions with BMP and also based on prevailing site conditions, it was decided by BMP and agreed, that inorder to incur minimum construction cost, minimum land acquisition and to avoid large scale distraction of properties adjoining to drains, it was decided to consider five year return period.

3.2.3 PHYSICAL PARAMETERS OF CATCHMENT:

Base maps showing the project area, topographical details like contour, water courses, tanks, wooded areas, rocky outcrops, marshes, etc., details of existing and proposed land uses, existing and proposed drains for establishing the study area drainage boundaries, general drainage pattern in these areas, surface slopes and total catchment area are developed. The catchment area is divided into pervious and impervious areas. In addition, the existing drainage channels in the catchment need to be characterized in terms of the cross sections, slopes, lengths, and linkages. The extent of development of the catchment has significant bearing on the runoff calculations.

3.2.4 PROCESS PARAMETERS:

These include infiltration rates, depression storage, roughness of transport elements and runoff coefficient. Generally, these parameters will be considered together as a lumped aggregate parameter.

3.2.5 METEOROLOGICAL DATA:

Important input for runoff computation is rainfall data. Rainfall data processing may be carried out by many approaches. Some of the methods are as listed and explained here under,

- 1. CPHEEO MANUAL
- 2. CALIFORNIA METHOD OF RANKING
- 3. GUMBEL'S DISTRIBUTION METHOD
- 4. LOG PEARSON TYPE III DISTRIBUTION

3.2.5.1 RAIN FALL ANALYSIS USING CPHEEO METHOD:

The rainfall data, for the period of past 25 years (i.e., from 1976 to 2001) has been collected from IMD. And analysis for calculating the frequency of storms for the stated intensities and duration has been computed and the same is tabulated.

From the tabulated values, storm occurrences for the different years has been computed and time intensity values for these frequencies has been obtained by interpolating the values for storms occurring once a year, once in 2 years, once in 5 years, once in 10 years and once in 20 years.

Using log-log sheet, a graph has been plotted using the values of intensity (i), and duration (t) from the above tabulated values for calculating the storm occurrences for different return periods i.e., once a year, once in 2 years, once in 5 years, once in 10 years and once in 20 years respectively. From the best fit line, values of 'a' & 'n' are obtained. Further the same is substituted in the equation below.

			а
	i	=	 + n
where,	i	=	t " intensity of rainfall in mm/hr
	t	=	duration of storm in minutes

a,b,n = constants as appropriate

After substituting values of 'a' and 'n', different values of " i " for a various values of " t " are calculated and tabulated. A curve is plotted using an ordinary graph paper.

Another graph of runoff coefficients (c) v/s duration time (t) is plotted as per the values given in Horner's table (Table 3.3, Pg. No. 45 of CPHEEO Manuel).

3.2.5.2 RAIN FALL ANALYSIS USING RANKING METHOD:

The rainfall data for a period of 25 years is collected from Indian Meteorological Department (IMD). From the rainfall data, intensity of highest rainfall is considered in that particular duration and year which is arranged in descending order and the rank is assigned with a rank one to the highest value, a rank of two to the next highest value and so on. Whenever a particular value occurs more then once, all the values should have the same rank as they are equal. Further, recurrence interval or frequency corresponding to each rank can be calculated using a formula

$$N = T x m$$

Where 'm' is the number of times, given rain is equalled or exceeded and is known as the ranking of the storm or ranking number

Extracting rainfall of various duration for desired frequency, further calculation of rainfall intensity in mm/hour has been done.

Using log-log sheet, graphs have been plotted using the values of intensity (i), and duration (t) from the above tabulated values for calculating the storm occurrences for different return periods i.e., once a year, once in 2 years, once in 5 years, once in 10 years and once in 20 years respectively. From the best fit curve, values of 'a' &'n' are obtained. Further, the same are substituted in the equation below.

			а
	i	=	 t ⁿ
where,	i	=	intensity of rainfall in mm/hr
	t	=	duration of storm in minutes

a,b,n = constants as appropriate

After substituting values of 'a' & 'n' different values of 'i' for a various values of 't' are calculated and tabulated. A curve is plotted using an ordinary graph paper.

3.2.5.3 RAIN FALL ANALYSIS USING GUMBEL'S DISTRIBUTION METHOD:

The rainfall data for a period of 25 years is collected from IMD and the highest rainfall intensity in that particular duration and year is considered and it is arranged in a sequential order. For each duration, the mean and standard deviation are calculated. Subsequently, the amount of rainfall for various duration and return period is calculated using the below equation.

$$XT = X + KSx$$

Where, X is the mean.

Sx is the standard deviation of the sample of extreme rainfall.

- X_T is the rainfall amount which is equalled or exceeded on an average once in 'T' years.
- K is the frequency factor which can be expressed in terms of the return period 'T' and the number of years of record 'N', The value of 'K' can be obtained from standard table.

By substituting the values of 'X', 'Sx' and 'K'. The value of 'K' can be obtained from standard table (from S.K Garg, Table 10.6) for N = 25 and return periods varying from 1 to 20 years.

Amount of rainfall obtained will be tabulated and further the same is converted into rainfall intensities and tabulated.

Using log-log sheet, a graph is plotted using the values of intensity (i), and duration (t) from the above tabulated values for calculating the storm occurrences for different return periods i.e., once a year, once in 2 years, once in 5 years, once in 10 years and once in 20 years. From the best fit curve, values of 'a' & 'n' are obtained. Further the same is substituted in the equation below.

			a
	i	=	
			t ⁿ
where,	i	=	intensity of rainfall in mm/hr
	t	=	duration of storm in minutes
	a,b,n	=	constants as appropriate

After substituting values of 'a' & 'n', different values of 'i' for various values of 't' are calculated and tabulated, a graph is plotted on an ordinary graph sheet.

Values obtained from the above three methods are compared with other design parameters which is suitable for the present site conditions and that method is adopted for computing storm water runoff.

3.2.6 STRUCTURAL DESIGN PARAMETERS :

Parameters and standards considered for design of sub structures, super structures and cross drainage works are as follows;

- 1.The structures are categorized as per Table-5B of IRC : 21-2000. Since the materials used are RCC, PCC and Stone masonry and in case of bridges total length is generally less than 60 m. In case the total length of the bridge is more than 60 m. or any innovative design approach is adopted the same is categorized as per Table 5A of IRC : 21-2000.
- 2.For design purposes the condition of exposure is considered as SEVERE. Since the structures are in contact with untreated sewage and drainage effluent.
- 3. The following materials are proposed to be used in the structures.

i.Minimum Grades of Concretes used are as below

•M15 - In levelling course below RCC, PCC & Stone masonry foundations, pile caps, approach slabs and in footpath fillings.

•M20 - In PCC structural elements like retaining walls & abutments

- •M25 In kerbs, hand rail, and posts, approach slab, retaining walls, piers, pile caps and abutments.
- •M35 In crash barriers, super structures, box culverts & piles etc.

•Maximum water cement ratio shall be 0.45.

- ii.Grade of steel to be used is Fe 415.
- iii.Course rubble stone masonry for bridge works such as abutments.
- iv.Random rubble stone masonry for retaining structures other than bridge abutments.
- v.CM 1:3 for stone masonry.
- vi.PVC pipes for weep holes in retaining walls and provision for service lines in superstructure.
- vii.Elastomeric bearings for beam and slab type superstructure.
- viii.Compression seal expansion joint for joints along longitudinal direction in carriage way portion of superstructure.
- ix.PVC water bar type expansion joint for superstructures with beam and slab arrangement.
- x.Premoulded bitumen filling joint for solid slab type superstructures covering full depth.
- xi.Premoulded bitumen filling joint for retaining walls.
- xii.Asphalted concrete wearing coat over mastic asphalt.
- xiii.Back filling behind abutments, returns and retaining walls shall be with granular materials with soil as per Appendix-6 of IRC : 78-2000.
- xiv.GI drainage spouts as per drawings.
- 4. Minimum dimensional requirements:
- i.Levelling course 100 mm. thick below RCC / PCC foundations.
 - 300 mm. thick below stone masonry foundations on soil base.
 - 150 mm. thick below stone masonry foundations on rock base
 - 150 mm. thick below approach slabs.
- ii.Walls 200 mm. thick for RCC / PCC walls.
 - 500 mm. thick for stone masonry walls.

iii.Wearing coat on deck slabs shall be 50 mm. thick asphalted concrete in two layers of 25 mm. each over 6 mm. thick mastic asphalt. Thickness of asphalted concrete shall be varied suitably to achieve the slopes for camber or super elevation.

iv.Normal camber considered is 2.5 %.

v.Weep holes with PVC pipes (100 mm. dia. in RCC and 150 mm. dia. in stone masonry) shall be used in retaining structures including abutments and retaining walls. The spacing of weep holes shall be 1.0 m. in either direction in staggered way, with lowest at about 150 mm. above the low water level or ground level which ever is higher. (MOST Spec. : 2706).

5.Loading :

Density of F	20%	=	2.2 t/m ³	
RCC		=	2.4 t/m ³	
Stone masonry		=	2.2 t/m ³	
Back filling		=	2.0 t/m ³	
i.Load	due to wearing coat	=	0.2 t/m ²	
ii.Load	due to crash barrier	=	0.8 t/m C	On each side.
iii.Load	I due to hand rail and kerb		=	0.95 t/m On each side.
iv.Load	I due to services in footpath	ו	=	0.1 t/m On each side.
v.Foot	path live load		=	0.5 t/m ² On each side.

vi.Vehicle live loads are as per clause 207.4, Table-2 of IRC:6-2000 for different carriage ways.

vii.Load due to water current as per clause 213 of IRC : 6 -2000.

viii.Live load surcharge is 1.2 m height of back fill.

ix.Buoyancy force as per clause 216 of IRC : 6-2000.

- x.One span dislodged condition is not considered in the case of slab bridges not provided with bearings. (As per clause 221.1 of IRC:6-2000.)
- xi.Seismic forces are not considered as the structures are located in Seismic Zone-1. (As per clause 222.1 of IRC : 6-2000.)

6.Miscellaneous details :

- i.Bridges or culverts with out footpath are provided with crash barrier / Hand rail.
- ii.Bridges or culverts with footpath are provided with hand rails as per SD/202 of MOST STD drawing with or with out crash barrier at the edge of carriage way.

iii.Drainage spouts in the superstructure of the bridge or culverts are as per SD/205 of MOST STD drawing.

3.3 CATCHMENT ANALYSIS:

To study the hydrological conditions and drainage characteristics of Koramangala valley catchment area, the following analysis procedure has been adopted

- Identification of ridge line and demarcation of catchment boundary.
- Demarcation of primary and secondary valleys.
- Demarcation of entire catchment into micro/sub catchments.
- Identification of flow regions within micro catchments.
- Codification of flow regions.
- Characterisation of the entire catchment in terms of landuse categories.
- Identification of open and closed reach of drains.
- Assignment of the degree of imperviousness to rainfall for the above categories.
- Computation of weighted average imperviousness for each of the flow region.

The ridge lines of Koramangala valley catchment area are demarcated based on the available 10 m. interval elevation contour information in the survey of India 1:20,000 scale topo map for Bangalore city. On which the valley lines and the local ridge lines are identified to demarcate the sub catchments and flow regions. These details prepared on 1: 20000 scale map are digitized to generate a vector layer in Arcview GIS as line coverage, as well as polygons coverage. After the transformation of the coverage with reference to the map used for digitization, various attribute details on length of arcs and area of polygons are analyzed to obtain the length both primary and secondary drains and area of catchment, sub catchment and micro catchment and the same is also indicated in Figure 3.1 & 3.2.

Further, to calculate the inlet time and time of concentration the sub/micro catchments are segmented into different flow regions based on terrain slope and other aspect derived from contour information. The area details of the micro catchments codes, flow regions, land use characteristics in Koramangala main valley and Tavarekere valley are provided in Table – 3.1 to Table - 3.4.

Table 3.1 KORAMANGALA MAIN VALLEY MICRO CATCHMENT CODE

SI. No.	Micro Catchment Code	Area (Ha.)
1	A 1	123.14
2	A 2	217.19
3	A 3	90.40
4	A 4	209.15
5	A 5	256.56
6	A 6	96.76
7	A 7	179.95
8	A 8	351.90
9	A 9	88.33
10	A 10	142.87
11	A 11	78.71
12	A 12	156.84
13	A 13	193.39
14	A 14	11.33
15	A 15	60.24
16	A 16	63.83
17	A 17	212.14
18	A 18	100.98
19	A 19	72.44
20	A 20	44.42
21	A 21	121.01
22	A 22	218.91
23	A 23	81.44
24	A 24	195.22
25	A 25	181.51
	TOTAL	3547.67

I.No.	Flow Region Code	Area (ha.)
1	A1 (a)	41.19
2.	A1 (b)	81.95
3.	A2	217.19
4.	A3	90.40
5.	A4	209.15
6.	A5 (a)	57.71
7.	A5 (b)	198.83
8.	A6 (a)	72.10
9.	A6 (b)	24.61
10.	A7	179.95
11.	A8 (a)	162.45
12.	A8 (b)	189.46
13.	A9	88.33
14.	A10	142.87
15.	A11	78.71
16.	A12	156.84
17.	A13	193.39
18.	A14	
19.	A15	60.24
20.	A16	63.83
21.	A17(a)	115.81
22.	A17(b)	22.33
23	A17(c)	73.00
24	A18(a)	41.00
25	A18(b)	59.97
26	A19	72.44
27	A20	44.42
28	A21(a)	18.85
29	A21(b)	13.84

Table 3.2 KORAMANGALA MAIN VALLEY FLOW REGION CODE

Remodelling of Primary Secondary Storm Water Drains in Bangalore City Chapter.3

Koramangala Valley - Project Report -

	TOTAL	3547.57
40	A25(b)	99.77
39	A25(a)	81.73
38	A24(b)	33.92
37	A24(a)	161.30
36	A23(b)	46.68
35	A23(a)	34.76
34	A22(b)	69.03
33	A22(a)	149.88
32	A21(e)	46.00
31	A21(d)	25.71
30	A21(c)	16.61

Table 3.3 TAVAREKERE VALLEY MICRO CATCHMENT CODE

SI.No.	Micro Catchment Code	Area (ha.)
1.	A 1	49.43
2.	A 2	138.81
3.	A 3	18.77
4.	A 4	21.30
5.	A 5	43.21
6.	A 6	65.79
7.	A 7	43.46
8	A 8	40.74
9	A 9	45.33
10	A 10	34.79
11	A 11	49.70
12	A 12	428.33
13	A 13	129.22
14	A 14	65.02
15	A 15	66.86
16	A 16	81.22
17	A 17	103.45
18	A 18	105.49
19	A 19	140.76

Remodelling of Primary Secondary Storm Water Drains in Bangalore City Chapter.3

Koramangala Valley - Project Report -

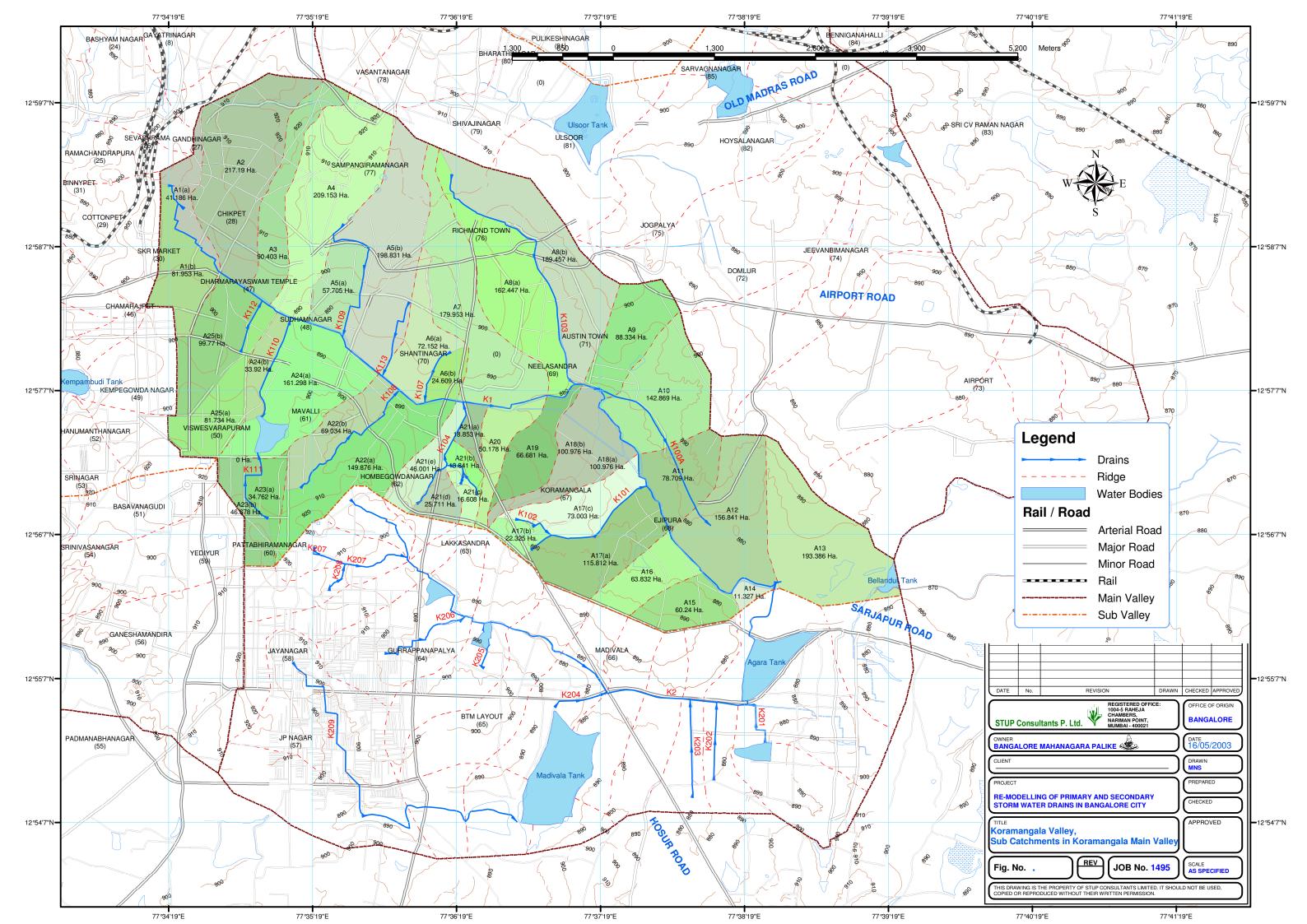
	TOTAL	2690.43		
27	A 27	56.98		
26	A 26	88.20		
25	A 25	71.97		
24	A 24	186.32		
23	A 23	262.89		
22	A 22	69.83		
21	A 21	168.80		
20	A 20	113.78		

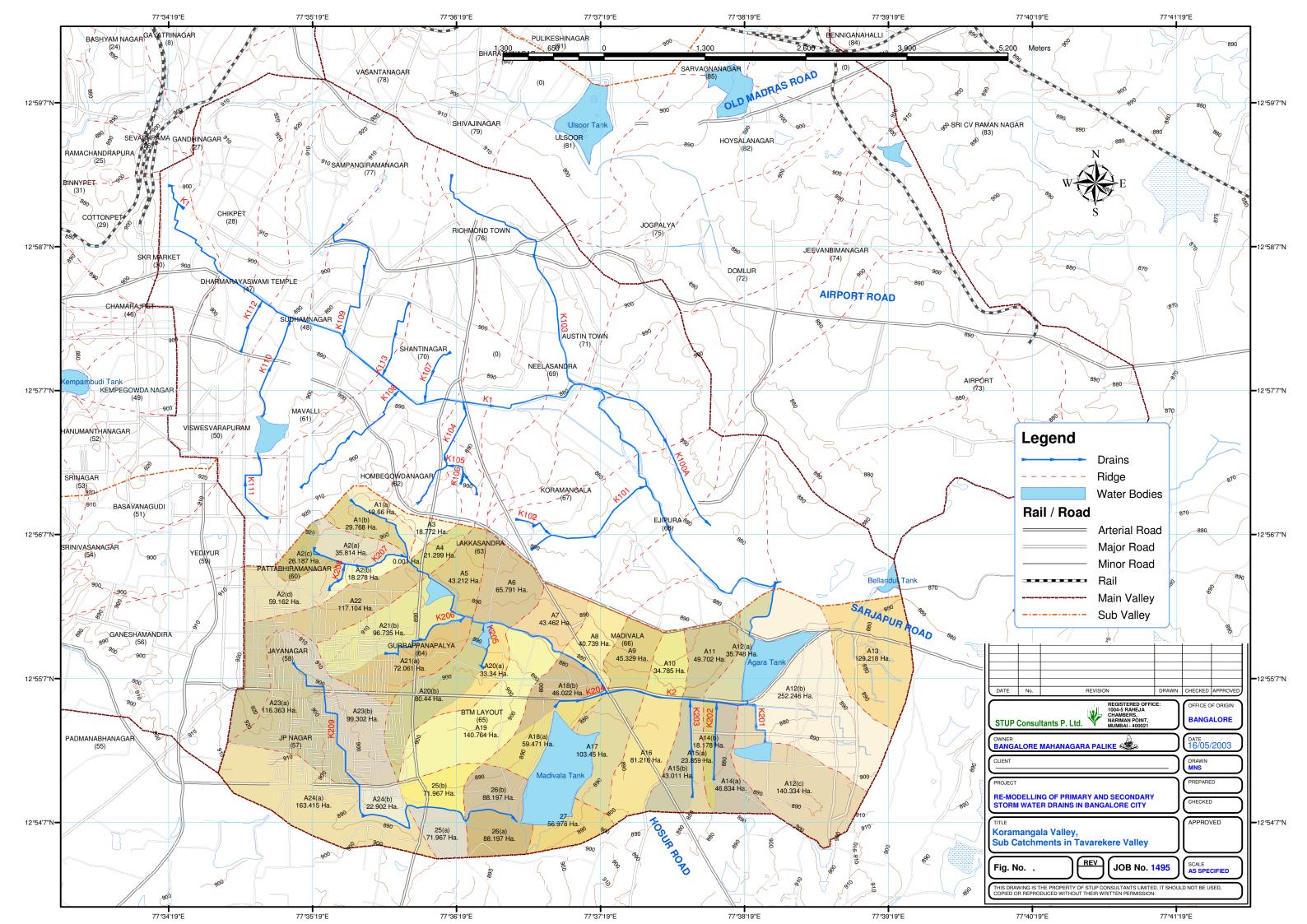
SI.No.	Flow Region Code	Area (ha.)		
1.	A 1 (a)	19.66		
2.	A 1 (b)	29.77		
3.	A 2 (a)	35.18		
4.	A 2 (b)	18.28		
5.	A 2 (c)	26.19		
6.	A 2 (d)	59.16		
7.	A 3	18.77		
8.	A 4	21.30		
9.	A 5	43.21		
10.	A 6	65.79		
11	Α 7	43.46		
12	A 8	40.74		
13	A 9	45.33		
14	A 10	34.79		
15	A 11	49.70		
16	A 12 (a)	35.75		
17	A 12 (b)	252.25		
18	A 12 (c)	140.33		
19	A 13	129.22		
20	A 14 (a)	46.84		
21	A 14 (b)	18.18		
22	A 15 (a)	23.86		
23	A 15 (b)	43.00		
24	A 16	81.22		
25	A 17	103.45		
26	A 18 (a)	59.47		

 Table 3.4 TAVAREKERE
 VALLEY FLOW REGION CODE

Remodelling	of Primary	Secondary	Storm	Water	Drains in	Bangalore	City
Chanter 3							

Koramangala Valley - Project Report -


	TOTAL	2690.43		
42	A 27	56.98		
41	A 26 (b)	47.60		
40	A 26 (a)	40.60		
39	A 25 (b)	37.59		
38	A 25 (a)	34.38		
37	A 24 (b)	22.90		
36	A 24 (a)	163.42		
35	A 23 (b)	99.30		
34	A 23 (a)	163.59		
33	A 22	69.83		
32	A 21 (b)	96.74		
31	A 21 (a)	72.06		
30	A 20 (b)	80.44		
29	A 20 (a)	33.34		
28	A 19	140.76		
27	A 18	46.02		


Using digital image processing technique and also by visual interpretation, satellite image is used to analyze the catchments and categorise the same for various landuse categories as listed below and further at strategic locations the processed results are cross verified at site and accordingly range of percent imperviousness is assigned for each category.

- 1. Highly / Dense built up area with sparse vegetal cover
- 2. Dense built up area with medium / thick vegetal cover
- 3. Built up area with more open space as well as fairly dense vegetal cover
- 4. Open space with no vegetal cover / Open space with scrubs and other vegetation
- 5. Parks
- 6. Water bodies

Further, in order to compute the weighted average percent imperviousness for each, the highest runoff percent imperviousness assigned is 80 - 95 % for the land where settlement density is very high (>90%) and all roads are paved. The lowest runoff percent imperviousness assigned is 5 -20 % for parks with medium dense vegetation. The details of area and assigned percent imperviousness is shown in Table - 3.5.& 3.6.

In order to compute the weighted average percent imperviousness for each flow

region, intersection of flow region boundaries with settlement density boundaries is done. A composite plans for Koramangala main valley and Tavarekere valley are generated by incorporating the drainage lines, ridge lines, flow region boundaries and the landuse and land cover categories and the same is indicated in Figure 3.3.

The weighted average percent imperviousness (IW) for each flow region is computed and is given by

$$IW = \frac{I_1 A_1 + I_2 A_2 + I_3 A_3 + I_4 A_4 \dots}{A_1 + A_2 + A_3 + A_4 \dots}$$

where, I_1 , I_2 , I_3 , I_4 are assigned imperviousness (%) for each of the land cover category within the flow region and A_1 , A_2 , A_3 , A_4 are the corresponding areas.

Assigned % SI.No. Land Cover Characteristics Area (ha) Imperviousness Highly / Dense built up area with sparse vegetal 1. 1524.02 75 – 90 cover Dense built up area with medium / thick vegetal 2. 740.22 65 - 80cover Built up area with more open space as well as 45 – 60 3. 247.13 fairly dense vegetal cover Open space with no vegetal cover / Open space 10 – 25 4. 266.12 with scrubs and other vegetation 5 Parks 755.20 05 – 20 Water Bodies 6 14.96 Total 3547.63

TABLE 3.5 KORAMANGALA VALLEY LAND COVER CHARACTERISTICS

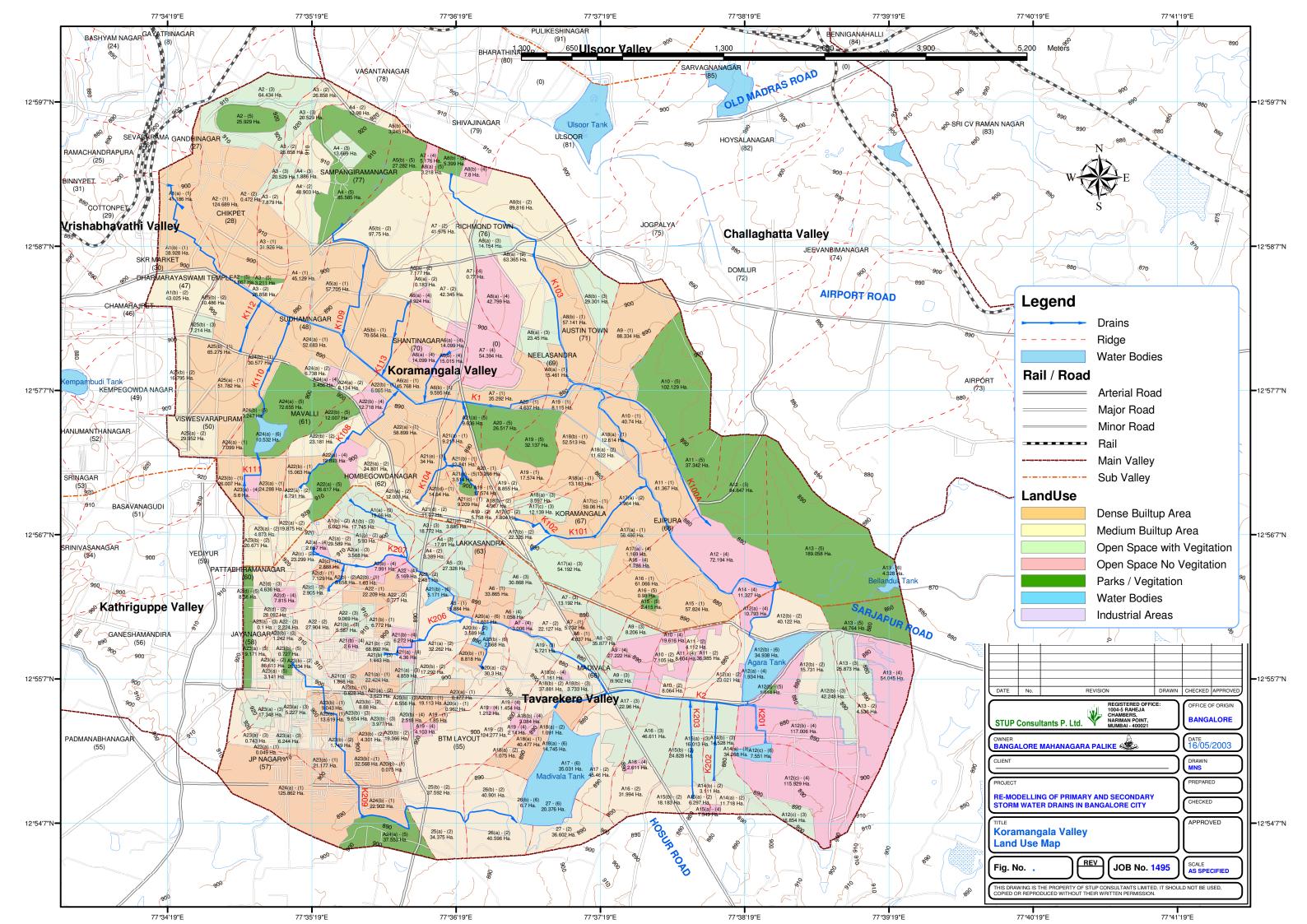
Table 3.6 TAVAREKERE VALLEY LAND COVER CHARACTERISTICS

SI.No.	Land Cover Characteristics	Area (ha)	Assigned % Imperviousness
1.	Highly / Dense built up area with sparse vegetal cover	420.59	75 – 90
2.	Dense built up area with medium / thick vegetal cover	1077.13	65 – 80
3.	Built up area with more open space as well as fairly dense vegetal cover	539.30	45 – 60

Remodelling of Primary Secondary Storm Water Drains in Bangalore City Chapter.3

Koramangala Valley - Project Report -

	Total	2690.43	
6	Water Bodies	128.68	
5	Parks	105.35	05 – 20
4.	Open space with no vegetal cover / Open space with scrubs and other vegetation	419.38	10 – 25


3.4 DESIGN PROCEDURE:

3.4.1 GENERAL:

Having understood the site conditions and terms of reference it is proposed to adopt the approach philosophy of which revolves around 4 cardinal points viz.:

- 1. Understanding the project requirements and the accomplishment of the overall objective of the project.
- 2. Appreciation of the various factors that help or hinder the overall objective of the project both from the review of available documents and a field visit to support the overall objective.
- Ensuring ways and means of assuring quality of the contract deliverables taking into considerations the factors – efficiency of function, economy of implementation, ease of construction and recognising the link of designsoperations interactions.
- 4. Ensuring quality assurance in the materials and methods of execution including modern methods of construction for early completion of the works.

And also review of available data through site appreciation leads us to formulate the

method of working to ensure:

•High degree of professional standards in designing the components.

•Clear detailing that will facilitate working and

•Quality assurance in the contract deliverables.

•Quality assurance in execution of contract.

In order to accomplish these objectives, following issues need to be addressed, as applicable for each of the three stages of the project Viz. Feasibility report, Detailed Project Report and Construction Supervision.

3.4.2 STORM WATER RUNOFF:

The storm water run off is the balance of rain water precipitation on the ground which flows in drains after a part of storm water getting infiltration into the soil, retention in surface depressions and evaporated. The rate of storm water run off to be used for design of storm sewers is complex to evaluate accurately. The rate of precipitation which causes the runoff is highly variable from place to place even within a smaller region of the City. The rainfall recording stations from which the intensity of precipitation and duration of rain fall is obtained for the design of storm water drains in many instances are remotely located from the area where the storm water drain has to be designed. The geological formation of the sub-surface will also be varying and estimations of these losses are complex. Numerous empirical runoff formulae had been used for estimation of storm water runoff. Some of the methods adopted are:

1.1.Rational method (Lloyd-Davis method evolved in the United Kingdom).

1.2.Hydrographs (Over-land Flow) method.

1.3.Inlet Method.

1.4.Unit Hydrograph method.

Out of the above methods, the rational method is widely used throughout the World. More than 90% of the Engineering offices through out the United States have confirmed in a questionnaire in the year 1956 with the rational method of design has given satisfactory results for urban drainage areas. The Ministry of Urban Development, Government of India, New Delhi, Central Public Health and Environmental Engineering Organization, has also recommended the estimation of storm water runoff by rational method.

3.4.2.1. RATIONAL METHOD:

The entire precipitation over the drainage district does not reach the storm water drains. The characteristics of the drainage district such as imperviousness, topography including depressions and water pockets, shape of the drainage basin and duration of the precipitation determine the function of the precipitation, which will reach the drain. This fraction known as the coefficient of runoff needs to be determined for each drainage district. The runoff reaching the drain is given by the expression,

Where, 'Q' is the runoff in m^3/hr ;

'C' is the coefficient of runoff;

'i' is the intensity of rainfall in mm/hr. and

'A' is the area of drainage district in hectares.

3.4.3. STORM FREQUENCY:

Urban storm drains are generally designed based on the concept of the design storm of a selected return period. In general the selection of the design event return period is affected by the design life of structures involved, construction cost and damage cost resulting from the system failure. Drainage structures are typically characterized by long design life and so the ideal design period should be one for which the total annual drainage costs, defined as the sum of annual construction and drainage failure costs are minimal.

While the foregoing may be true for major system, urban storm drainage system being minor system does not warrant a detailed analysis of construction and failure costs. But must evaluate acceptable risk caused by the failure of the system, depending on whether it is a major or minor drainage system.

Major drainage system comprises natural streams and valleys as well as man made

elements such as swales, channels, and ponds. The system should accommodate runoff from infrequent storms with long return periods. Damage caused by the failure of a major drainage system and the associated risks are loss of agricultural yield, damage to properties and even loss of life. Minor drainage system consists of swales, streets gutters, catch basis, storm sewers and surface and subsurface detention facilities. The minor system, designed to convey runoff from frequent storms with return periods i.e. from one to two years, primarily reduces the frequency of inconvenience caused by storm water ponding to both pedestrians and motorists. The consequences of failure of minor drainage are often insignificant provided the connected major drainage system is properly functioning.

Thus the selection of design return period for urban storm drain depends on the importance of area to be drained. Commercial and industrial areas have to be subjected to less frequent flooding. Manual on Sewerage and Sewage Treatment by the Ministry of Urban Development recommend the following:

•Residential area and Peripheral areas	Twice a year
 Central and high priced areas 	Once a year
 Commercial and high period areas 	Once in two years.

3.4.4 INTENSITY OF PRECIPITATION:

The intensity of rainfall decreases with duration. Analysis of the observed data on intensity duration of rainfall of past records over a. period of years in the area is necessary to arrive at a fair estimate of intensity - duration for given frequencies. The longer record available, the more dependable is the forecast. In Indian conditions, intensity of rainfall adopted in design is usually in the range of 12 mm./hr. to 20 mm./hr. Rainfall data over a period of 25 years is collected and considered.

Frequency of storms of intensities 10 mm./hr to 120 mm./hr. for duration of 5 min. to 120 min. are tabulated, and the number of storms that had occurred for the stated intensities and duration for the desired frequency of storms (once in a year and once in two years) are considered.

The relationship between intensity and duration of storm may be expressed by a suitable, mathematical formula, several forms of which are available. The following two equations are commonly used.

		i) i =	a t ⁿ
		ii) i =	a t + b
where,	i	=	intensity of rainfall in mm/hr
	t	=	duration of storm in minutes
	a,b,n	=	constants as appropriate

The available data on 'i' and 't' are plotted and the values of the intensity (i) can be determined for any given time of consideration, (t_c).

3.4.5. TIME OF CONCENTRATION:

It is the time required for the rain water to flow over the ground surface from the farthest point of the drainage basin to reach the nodal point i.e., under consideration. Time of concentration (t_c) is equal to inlet time (t) plus the time of flow in the drain (t). The inlet time is dependent on the distance of the farthest point in the drainage basin to the inlet of the drain, the shape, characteristics and topography of the basin may generally vary. The time of flow is determined by the length of SWD and the velocity of flow in the SWD. It is to be computed for each length of SWD to be designed.

3.4.6. COEFFICIENT OF RUNOFF:

The portion of rainfall which finds its way to the drain is dependent on the imperviousness and the shape of tributary area, apart from the duration of storm.

1) Imperviousness:

The percent imperviousness of the drainage area can be obtained from the records of a particular district. In absence of such data, the following may ranges may serve as a guide.

Type of Area

Percentage of Imperviousness

Remodelling of Primary Secondary Storm Water Drains in Bangalore City	
Chapter.3	

Koramangala Valley - Project Report -

0		
	Commercial and industrial area	70 to 90
	Residential area:	
	•High density	60 to 75
	•Low density	35 to 60
	Parks and undeveloped areas	10 to 20

The weighted average imperviousness of drainage basin for the flow concentrating at a point may be estimated using

 $I = (A_1I_1 + A_2I_2 + \dots) / (A1 + A2 + \dots)$

Where, A_1 , A_2 = Drainage areas tributary to the section under consideration

 I_1, I_2 = Imperviousness respective areas and

I = Weighted average imperviousness of the total drainage basin.

3.4.7. TRIBUTARY AREA:

For each length of storm sewer, the drainage area should be indicated clearly on the map and measured. The boundaries of each tributary are dependent on topography, land use, nature of development and shape of the drainage basins. The incremental area may be indicated separately on the compilation sheet and the total area computed.

3.4.8. DURATION OF STORM:

The concept of design storm is developed to account for the time varying rainfall input as against the constant intensity design rainfalls. The assumption made in this concept is that the return period of the calculated runoff event is identical to the design storm.

For selected return period, the design storm is characterized by the duration, total amount of rainfall, the maximum rainfall intensity of a certain short duration, the timing of peak intensity and temporal storm rainfall distribution.

Continuously long light rain saturates the soil and produces higher coefficient than that of heavy rainfall for shorter duration. But intermittent rains in the same area causes

lesser saturation in the latter case. Runoff from an area is significantly influenced by the saturation of the surface near the point of concentration, rather than the flow from the distant area. The runoff coefficient of a larger area has to be adjusted by dividing the area into zones of concentration and by suitably decreasing the coefficient with the distance of the zones.

3.4.9. COMPUTATION OF RUNOFF COEFFICIENTS:

The weighted average runoff coefficients for rectangular areas of length four times the width as well as for sector shaped areas with varying percentages of impervious surface, for different times of concentration are given in Table 3.7. Although these are applicable to particular shape of areas, they also apply in a general way to the areas which are usually encountered in practice. Errors due to difference in shape of drainage are within the limits of accuracy of the rational method and of the assumption on which it is based.

Duration t, minutes	10	20	30	45	60	75	90	100	120	135	150	185
Weighted average coefficients												
1. Sector concentrating in stated time												
a) Impervious	.525	.588	.642	.700	.740	.711	.795	.813	.828	.840	.850	.865
b)60% impervious	.365	.427	.477	.531	.569	.598	.622	.641	.656	670	.682	.701
c)40% Impervious	.285	.346	.395	.446	.482	.512	.535	.554	.571	.585	.597	.618
d) Pervious	.125	.185	.230	.312	.312	.330	.362	.382	.399	.414	.429	.454
2. Rectangle (length = 4 x width) Concentrating in stated time												
a) Impervious	.550	.648	.711	.768	.808	.837	.856	.869	.879	.887	.892	.903
b)50% Impervious	.350	.442	.499	.551	.590	.618	.639	.657	.671	.683	.694	.713

 TABLE – 3.7
 Table of CPHEEO Manual - Runoff Coefficient

STUP Consultants P. Ltd.

Remodelling of Primary Secondary Storm Water Drains in Bangalore City Chapter.3

Koramangala Valley - Project Report -

c)30% Impervious	.269	.360	.414	.464	.502	.530	.552	.572	.588	.601	.614	.636
d) Pervious	.149	.236	.287	.334	.371	.398	.422	.445	.463	.479	.49	.522

3.5. HYDRAULICS OF STORM DRAIN:

Flow capacity of open channels is calculated for each stretch of drain, of different bed slope using Manning's formula.

$$V = [(I/n)] \times [R^{2/3} S^{1/2}]$$

The Mannings co-efficient 'n' for various drain surfaces are Masonry with;

	a.Neat cement plaster	0.013						
	b.Sand and cement plaster	0.015						
	c.Concrete, steel troweled	0.014						
	d.Concrete, wood troweled	0.015						
	e.Brick in good condition	0.017						
	f.Masonry in bad condition	0.020						
Stone wor	rk;(a) Smooth, dressed ashlar		0.015					
(b) Rι	ubble set in cement	0.017						
(c) Fir	0.020							
Earth;	(a) Regular surface in good cond	dition	0.020					
(b) In-	ordinary condition	0.025						
(c) W	0.030							
(d) In poor condition 0.035								
(e) Pa	artially obstructed with debris or weeds	0.050						

3.5.1 RATIONAL METHOD:

The Rational method is based on the following assumptions :

- 1)The peak rate of runoff at any point is a direct function of the average rainfall intensity during the time of concentration to that point.
- 2)The frequency of the peak discharge is the same as the frequency of the average rainfall intensity. The time of concentration is the time required for the runoff to become established and flow from the most remote part of the drainage area to the point under design.

The later assumption applies to the part most remote in time, not necessarily in distance. In the rational method, average intensities have no time sequence relation to the actual rainfall pattern during the storm. The intensity duration curve used in this method is not a time sequence curve of precipitation.

The determination of values for the coefficient of runoff is difficult because this factor must represent many variables, including infiltration, ground slope, ground cover, surface and depression storage, antecedent precipitation and soil moisture, shape of drainage area, overland flow velocity, etc.

AREA:

The area of tributary to any point under consideration in a storm-sewer system must be determined.

Boundaries of the drainage area may be established by field surveys or from suitable maps or aerial photographs.

The complete drainage area is subdivided into sub-catchments and further into micro catchments for each tributary upto the point of inlet. This requires a preliminary layout of the system and tentative location of inlet point. Rearrangement of the system layout or of inlet location often is indicated as the design process proceeds. This requires reorganisation of component parts of the main drainage area to conform to the system layout and inlet scheme finally adopted.

3.5.2RAINFALL:

(a) Rainfall intensity factor, Determination of rainfall intensity, 'i' for storm-sewer design involves consideration of the following factor:

- 1. Average frequency of occurrence
- 2.Intensity duration characteristic of rainfall for selected average frequency of occurrence.
- 3. Time of concentration.

b) Rainfall frequency: The average frequency of rainfall occurrence used for design determines the degree of protection afforded by a given storm drain system. This protection should be consistent with the amount of damage prevented. But in practice, cost-benefit studies usually are not conducted for the ordinary urban storm drainage project. Judgement supported by records of performance in other similar areas is usually basis of selected frequency.

The range of rainfall frequency used in engineering practices is as follows:

- 1)For storm drains in residential areas, 2 to 15 years with 5 year most commonly reported.
- 2)For storm drains in commercial and high value areas, 10 to 50 years, depending on economic justifications.
- 3)For flood protection works, 50 years or more

In the analysis of point rainfall intensity-duration data, there are two approaches, the annual duration and partial-duration series. In the annual duration series, for each duration selected, the heaviest rainfall that occurred in each year is listed, with no tabulation of lesser intensities during the same calendar year, even though some of them might be greater than rainfall intensities that occurred in other years of record. The first of these methods gives the probability of occurrence that the maximum rainfall in anyone year for a specified duration will equal or exceed in given intensity. In the other treatment of the data, partial duration series, all rainfall intensities above a practical minimum for each duration for the entire period of record are included. The second method gives the frequency or the number of occurrences in a given period of time that a rainfall of given intensity and duration will be equal or exceeded.

Sherman has injected the concept of "extended duration" which has been used widely

and is recommended for developing rainfall intensity frequency data. In this method, if the total precipitation in a storm is sufficient to show significant average rates for periods longer than the actual duration of the rainfall, such storms are included in the data compilations as multiple events as though they had continued for the longer times. For example, a rainfall amount for an actual 50 min storm would be listed not only as a 50-min storm with its corresponding intensity, but also as a 60-min or 90-min, or longer duration storm with a corresponding lesser intensity.

Return Period (Years)	Multiplier				
2	1.14				
5	1.04				
10	1.01				

Table - Empirical Factors for Converting Annual-Duration Series Partial-Duration Series

Time of Concentration - An estimate of the time of concentration to the point under consideration is made so that the average rainfall rate may be determined. For urban storm sewer the time of concentration consists of the inlet time plus the time of flow in the sewer from the most remote inlet to the point under consideration.

Time of flow in the sewer may be estimated closely from the hydraulic properties of the conduit. Inlet time is the overland flow time for runoff to reach established surface drainage channels such as street gutters and ditches and travel through them to the point of inlet.

Inlet time will vary with surface slope, nature of surplus cover, and length of path of surface flow, as well with the variables influenced by antecedent rainfall intensity and duration such as infiltration capacity.

3.5.3 RUNOFF COEFFICIENTS:

General Considerations.- The run coefficient, 'C' is the variable in rational method, which is least susceptible to precise determination. Its use in the formula implies a fixed ratio for any given drainage area, whereas, in reality, the coefficient accounts for

abstractions or losses between rainfall and runoff which may vary for a given drainage area as influenced by differing climatological and seasonal conditions.

These losses, together. with their order of magnitude as observed by various investigators include:

- 1)Interception by vegetation. This is not usually significant in urban drainage but may range from 0.01 to 0.5 in. (0.03 to 0.13 cm.) in forest areas, depending on type of cover.
- 2)Infiltration into permeable soils. The ability of a soil to absorb water and percolate it to deeper groundwater is affected by certain events before and during a given storm, such as compaction of the surface, in-washing of finer sediments, and swelling of clays or colloidal soils. The Hydrology Handbook gives the following range of value of infiltration capacity. If various types of bare soils after 1 hr. of continuous rainfall.

Soil Group	Infiltration (In./hr.)
High (sandy, open structured)	0.50 to 1.00
Intermediate (loam)	0.10 to 0.50
Low (clay, dense structured)	0.01 to 0.10

Note: In. x 2.54 = cm.

The hand book also notes the profound influence of ground cover showing that baresoil infiltration capacity can be increased from 3 to 7.5 times with good permanent forest or grass cover, ranging down. to little or no increase with poor row crops. Antecedent precipitation also affects soil infiltration capacity, but few quantitative data are available to evaluate this factor.

Retention in Surface Depressions.- The excess rainfall fills depressions essentially present in all surfaces. Retention in forest litter may be as much as 0.3 in. (0.08 cm.): in good pasture, 0.2 in. (0.05 cm.): and in smooth cultivated land, 0.05 to 0.10 in. (0.13 to 0:3 cm.). In urban areas of moderate grade, recent gauging shows retention to be

about 0.05 in. (0.13 cm.) for impervious surfaces. Retention has been assumed to be 0.10 in. (0.3 cm) for surfaces such as lawns and normal urban pervious surfaces.

Evaporation and Transpiration - These are of little significance for the short rainfall duration encountered in urban storm drainage design.

Average Coefficients.- The use of average coefficients for various surface types, which are assumed not to vary through the duration of the storm is common.

The range of coefficient, classified with respect to the general character of the tributary area reported in use is :

Description of Area	Runoff coefficients			
Business				
Down Town	0.70 to 0.95			
Neighbourhood	0.50 to 0.70			
Residential				
Single Family	0.30 to 0.50			
Multi-Units, detached	0.40 to 0.60			
Multi-Units, attached	0.60 to 0.75			
Residential (Suburban)	0.25 to 0.40			
Apartment	0.50 to 0.70			
Industrial				
Light	0.50 to 0.80			
Heavy	0.60 to 0.90			
Parks, Cemeteries	0.10 to 0.25			
Playgrounds	0.20 to 0.35			
Railroad yards	0.20 to 0.35			
Unimproved lands	0.10 to 0.30			

It often is desirable to develop a composite runoff coefficient based on the percentage of different types of surface in the drainage area. This procedure often is applied to typical "sample" blocks as a guide to selection of reasonable values of the coefficient for an entire area. Coefficients with respect to surface type currently in use are:

Character of Surface	Runoff Coefficients	
Pavement		
Asphaltic and Concrete	0.70 to 0.95	
Brick	0.70 to 0.85	
Roofs	0.75 to 0.95	
Lawns, sandy soil		
Flat, 2 percent	0.05 to 0.10	
Average, 2 to 7 percent	0.10 to 0.15	
Steep, 7 percent	0.15 to 0.20	
Lawns, heavy soil		
Flat, 2 percent	0.13 to 0.17	
Average, 2 to 7 percent	0.18 to 0.22	
Steep, 7 percent	0.25 to 0.35	

The coefficient in these two tabulations are applicable for storms of 5 to 10 years frequencies. Less frequent, higher intensity storms will require the use of higher coefficients because infiltration and other losses have a proportionally smaller effect on runoff. The coefficient based on the assumption that the designs storm does not occur when the ground surface is frozen.

3.6. APPLICATION OF RATIONAL METHOD:

After the items discussed in the proceeding sections have been determined or estimated, a tentative arrangement of the proposed system including the location of inlets is made to permit division of the whole drainage area into sub districts tributary to sections of the storm sewer system.

Coefficients are selected or estimated which are appropriate for the land use and development expected at the end of the period of design.

Rainfall frequency consistent with degree of protection desired is selected and intensity-duration curves for the locality are developed from available rainfall records or from such other data as may be available (6).

Many designers find it convenient to reduce the rainfall – intensity relationship to a family of curves of runoff for rainfall intensities of selected frequencies. Such curves indicate the product of the runoff coefficient and average rain intensity (18). Other designers suggest weighing the size of the areas to reflect the variation imperviousness of individual sub areas from the average imperviousness of the project area. The weighted area size then is applied to the runoff curve developed for the average degree of imperviousness.

3.7 PROCESSING OF RAINFALL DATA:

Estimation of storm run-off depends on many factors and is difficult to evaluate accurately. It however demands a study of rainfall data for the past few years with regard to intensity and duration of each spell etc. Indian Meteorological Department, (IMD) Bangalore was contacted to furnish the rainfall data and they made available rainfall data i.e. intensity and duration at 15 minutes intervals for the years 1976 to 2001 (25 years) and it was possible to carry out the analysis of the frequency of storms of stated intensities and durations. In general there are two approaches in the analysis of rainfall intensity - duration data viz., (1) Annual - duration. series and (2) Partial duration series. In partial - duration series, all rainfall intensities above a practical minimum for each duration for the entire period of record are included and hence this series is adopted for the analysis with the concept of "extended duration" as recommended by American Society of Civil Engineers manual. Due to practical limitations IMD have not been able to give the amount of spells less than 15 minutes for longer duration of rainfalls i.e. for 5 and 10 minutes durations, having higher intensities. As this is an essential data, corresponding higher intensity rainfall for lesser duration of 5 and 10 minutes was computed, from the available heaviest rainfall. in 15 minutes. The occurrence values thus arrived at are plotted on a graph paper against the time duration for various intensities of rainfall viz. 15 mm/hr to 240 mm/hr., are plotted on graphs, and the line of best fit is drawn for each curve of Occurrence vs. Duration. From these lines of best fit marked in the graphs of each intensities, the frequency of storms for different stated duration are finally derived.

Table - 3.8 gives the analysis of the frequency of storms of stated intensities anddurationduringthepast25years.

	Duration (t) in minutes						
Intensity(i)mm/hr.	One year storm	Two year storm	Five year storm	Ten year storm	Twenty year storm		
	(i.e. 25 times)	(i.e. 12.5 times)	(i.e. 5 times)	(i.e. 2.5 times)	(i.e.1.25 times)		
15	123.75	202.50	-	-	-		
20	101.25	155.63	202.50	-	-		
25	65.63	106.88	165.00	217.50	236.25		
30	51.00	77.50	120.00	187.50	206.25		
35	39.38	69.38	112.50	157.50	176.25		
40	30.00	57.50	97.50	127.50	146.25		
50	23.75	55.86	75.00	108.75	118.13		
60	-	34.39	67.50	92.50	98.75		
70	-	16.00	30.00	48.75	58.13		
80	-	-	24.00	37.50	51.63		
90	-	-	18.75	28.00	41.25		
100	-	-	-	18.75	28.13		
120	-	-	-	-	-		

Table 3.9 Time intensity values of storms

The time intensity values for these frequencies are obtained by interpolation and given in Table 3.9, for storm occurring once a year, once in 2 year, once in 5 year, once in 10 year & once in 20 years.

A graph (Fig. 3.4 to 3.8) is plotted using the values of 'i' and 't' from Table-3.9 for once a year, once in two years and once in five years storms on a log-log paper. As per central Public Health and Environmental Engineering organisation (CPHEEO) manual guidelines, once a year frequency of storm is considered for central and comparatively high priced areas, for commercial areas once in two years frequency of storm is to be considered. In addition once in five years, ten year and twenty year frequency is also considered for checking, the adequacy of culverts and the adequacy of drain reach near flood prone areas.

The generalised formula adopted for	or intensity and duration is :
-------------------------------------	--------------------------------

		i	a = t ⁿ
Where,	i	=	intensity of rainfall in mm/hr
	t	=	duration of storm in minutes
a,b,n	=	constants as appropriate	

From the line of best fit marked in the graph (Fig. 3.4 to 3.8) the values of 'a' and 'n' are found out for one, two, five, ten and twenty year storms. From the plotted best fit line, values of 'a' and 'n' are obtained:

- (i) a = 414.25 and n = 0.673 for storm once a year.
- (ii) a = 511.91 and n = 0.6399 for storm once in two years,
- (iii) a = 570.75 and n = 0.5987 for storm once in five years.
- (iv) a = 568.72 and n = 0.5476 for storm once in ten years.
- (v) a = 976.47 and n = 0.6442 for storm once in twenty years.

Now using the above equation and substituting, the values of 'a' and 'n', different values of 'i' for various values of 't' are calculated and tabulated in Table 3.10.

Duration "t"	Intensity (i) = a / t ⁿ (mm/hour)						
in minutes	One year storm	Two year storm	Five year storm	Ten year storm	Twenty year storm		
	(i.e. 25 times)	(i.e. 12.5 times)	(i.e. 5 times)	(i.e. 2.5 times)	(i.e. 1.25 times)		
	a = 414.25	a = 511.91	a = 570.75	a = 568.72	a = 976.47		
	n = 0.673	n = 0.6399	n = 0.5989	n = 0.5474	n = 0.6442		
5	140.23	182.78	217.69	235.66	346.24		
10	87.96	117.30	143.73	161.25	221.54		
15	66.95	90.49	112.74	129.15	170.62		
20	55.17	75.28	94.90	110.34	141.75		
25	47.47	65.26	83.03	97.65	122.77		
30	41.99	58.07	74.44	88.37	109.17		
45	31.96	44.80	58.39	70.78	84.07		
60	26.34	37.27	49.15	60.47	69.85		
75	22.66	32.31	43.00	53.52	60.50		
90	20.05	28.75	38.55	48.43	53.79		
105	18.07	26.05	35.15	44.51	48.71		
120	16.52	23.92	32.45	41.38	44.69		
135	15.26	22.18	30.24	38.79	41.43		
150	14.22	20.74	28.39	36.62	38.71		
165	13.33	19.51	26.82	34.76	36.40		
180	12.57	18.45	25.45	33.14	34.42		
195	11.91	17.53	24.26	31.72	32.69		
210	11.33	16.72	23.21	30.46	31.17		
225	10.82	16.00	22.27	29.33	29.81		
240	10.36	15.35	21.43	28.31	28.60		

TABLE – 3.10

A curve is plotted on an ordinary graph paper (Fig 3.9) and from this graph or from loglog paper (Fig. 3.4 to 3.8), value of intensity of storm for any given duration can be worked out for return period of one, two, five, ten and twenty years.

Another graph (Fig.3.10), run-off coefficient 'c' vs duration time 't' is plotted as per : values given in Homer's table (Table 3.3, Pg. No. 45 of CPHEEO Manuel).

3.8 COMPUTATION OF STORM WATER RUN-OFF:

Quantity of storm water run-off is calculated using the rational formula:

Q = 10 C. i . A.

Where, Q = run-off in m3/hr c. = coefficient of run-off i. = intensity of rainfall in mm/hr A = area of drainage segment in hectares

Coefficient of run-off (c) is arrived at by interpolation of values given in Homer's table with respect to time of concentration (t_c) and for weighted imperviousness. Refer Graph (Fig. 3.10).

As per CPHEEO guide lines, the inlet time which depends on the distance of the farthest point in the drainage basin to the inlet drain, the shape, characteristics and topography of the basin and this may generally vary from 5 to 20 minutes. The inlet time in the present case will be the time taken for the storm water to flow through a network of roadside drains (roads parallel to the main drain and perpendicular to the main drain) till it reaches either a secondary drain or a primary drain. The range of velocities obtained for the secondary/primary drains considering the ground slope and the drain sections as per the existing uncleaned / silted condition of drain, works out to 0.5 to 4.5 m/sec. The mean velocity of flow in the primary drain for 0 to 1000 m distance for clean condition of drain and silted up condition of drain is found to be 5.2 m/sec and 3.4 m/sec respectively. Keeping this velocities in view, a velocity of flow of 1.2 m/sec for terrain and maximum of 5.2 m/sec in drain was chosen to estimate the time of flow (considering cleaned drain with moderate siltation / vegetation).

To arrive at a realistic time of concentration, surface flow velocity of rainwater is taken as 5.1 m/sec as stated above and the time of flow from the farthest point of the contributory area is worked out, The inlet time varying from 5 to 20 minutes depending on various factors. The time thus derived are used to compute design run-off of each segment.

The weighted imperviousness of the drainage area segment-wise, was worked out as stated in earlier section. Due to non-availability of 0.5 m. or 1.0 m. contour map, the entire tributary area has been divided into various segments with respect to the ridge line and flow patterns, using the area map developed from the satellite imagery.

The identification of roadside drains / feeder drains leading to primary or secondary drains and adequacy check of such drains is not under the scope of work. However, multiple number of small drains existing in reality by the side of roads in each segment of catchment area (to be drained into main valley) is assumed to be replaced by centrally placed storm drain.

Intensity of rainfall (i) is arrived from the Graphs (Fig. 3.4 to 3.8 or 3.9) with respect to time of concentration (t $_{\rm c}$).

Area of each drainage segment for the entire watershed area has been arrived from the micro catchment area map enclosed in Section 3.3 of this chapter.

Quantity of storm water run-off, worked out segment-wise are furnished for Koramangala main valley and Tavarekere valley in Table 4.1 & 4.2 is as enclosed in the section 4.2 of Chapter - 4 in this report.

CHAPTER - 4

REVIEW OF ASSESSMENT AND RECOMMENDATIONS ON EXISTING STORM WATER DRAINAGE SYSTEM

4.1 INTRODUCTION:

This chapter on review of assessment has been prepared to identify the reasons for the failure of the system components, during the recent years. Depending on the nature and extent of the system failure, the approach for improving the carrying capacity and rehabilitation methodologies vary accordingly. Therefore a generic groupings of approach and methodologies in achieving the objective and proper functionality of the system for different applications are needed.

To identify and prioritise rehabilitation needs, a systematic approach in planning and investigation of most problematic areas is much needed and this will intern involve, establishment of guidelines to observe the system performance and levels of service offered etc., from which decisions can be consistently based.

As the implementation of a systematic approach to planning and investigation involve significant resource commitments, both in personnel and financial terms, it is proposed that the BMP progressively improve towards achieving this long-term objective.

Further, Improvements to the existing storm drainage system, which is serving the core area is considered to be on priority for five key reasons:

- •To rectify current localised flooding problems in the critical low lying areas.
- •To cope with additional areas being included into the BMP administered area.
- •To improve and extend the security of services in vulnerable areas of the current BMP administered area.
- •To improve and protect the quality of environmental attributes including aesthetic appearance of city's environs.
- •To minimise cost implication on operation and maintenance of the system.

4.2 REPORT ON ADEQUACY ANALYSIS OF EXISTING SYSTEM:

An assessment of the existing system for its adequacy has been made using computer

modelling. The adequacy of the existing system has been analysed and correlated for different year return periods.

Further, these analysis results have been once again correlated with the situation and specific site condition to verify the accuracy of the results and to suggest the strategic improvements required at that particular location.

The focus of this section is solely on

Storm drains

Cross drains

>Storm Water Drains:

The total catchment area of the Koramangala valley is 3548 Ha. The localities which contribute and the existing condition of these drains is detailed in Section 2.3 & Section 2.6 of Chapter 2.

Cross section data of the existing drains at every 25 m. apart was collected and computer models & spread sheets were developed to analyse for their carrying capacity. The analysis has been done for different year return periods. The calculations and results of these analysis is enclosed in Table 4.1 A(existing unclean condition) 4.1 B (existing clean condition) & 4.1 C (Proposed clean condition) for storm drains in Koramangala main valley & Table 4.2 A (existing unclean condition) 4.2 B (existing clean condition) & 4.2 C (Proposed clean condition) for storm drains in Tavarekere valley.

These tables show the discharge (Q) in the existing drain at that particular chainage. The procedure adopted to work out the required data are furnished below.

- 1.Drain bed levels on either side of the existing drain differ marginally and hence the average of these levels are considered for computation.
- 2.Drain wall top levels of the existing drain also differ and hence the lower wall level /

lowest ground level heights are considered for the depth of the drain.

- 3.Free board is taken as 300 mm. for one and two year storms and 100 mm. for five, ten & twenty year storms.
- 4.Coefficient of roughness (n) considered as 0.035 for unclean conditions and 0.025 for clean conditions respectively for the analysis of existing drains and 0.02 0.025 for remodelled drain.
- 5.Design runoff (Q required) are worked out for respective chainages based on the runoff calculated segment wise.

From the analysis and the assessment carried out, following outcomes are highlighted (Existing unclean condition):

→Koramangala Main Valley:

- •Near Upparpete, Chickpete, Akkipete & Culthanpete area the existing storm drain is having a larger catchment area, more paved, less time of concentration, drain depth and width is very less, gentle slope is available, severely silted, max. obstructions and also drain walls are in moderate condition. Hence the drain capacity is adequate only for one year return period.
- •Near Avenue Road, K. R. Market, Kalasipalya & Bamboo bazar the existing storm drain is having a larger catchment area, more paved, less time of concentration, drain depth and width is very less, shallow depth, moderate bed slope is available, silted, bed is in natural condition, number of obstructions and also drain walls are in moderate condition. The drain capacity is adequate only for one year return period.
- •Near J.C. Road, Sudhamanagar & Journalist Colony the existing storm drain is having a larger and dense built up catchment area, less time of concentration, drain width is comparatively less, shallow depth, very flat bed slope is available, silted, bed is in natural condition, max. obstructions and also drain walls are in

moderate condition. The drain capacity in this stretch is very inadequate.

- •Near Lalbagh Road, Sampanigiramnagar, Annipura & K.H. Road the existing storm drain is having a larger and dense built up catchment area, less time of concentration, sufficient drain width and depth, moderate bed slope is available, silted, bed is in natural condition, min. obstructions and also drain walls are in moderate condition. The drain capacity is adequate for two year return period.
- •Near K.S.R.T.C. Bus Depot & Wilson Garden area the existing storm drain is having a wider catchment area, less time of concentration, sufficient drain width and depth except near 9th Cross Wilson Garden, very flat bed slope is available, silted, bed is in natural condition, min. obstructions and also drain walls are in moderate condition. The drain is adequate for only one year return period.
- •Near Vinayakanagar & Pothalappa Garden the existing storm drain is having a comparatively wider and dense builtup catchment area, less time of concentration, sufficient drain width and depth except at few places width gets reduced, very flat bed slope is available, silted, bed is in natural condition, min. obstructions and also drain walls are in moderate condition. The drain capacity is very inadequate.
- •Near Hosur Road, Adugodi the existing storm drain is having a lesser catchment area, less paved area, more time of concentration, sufficient drain width and depth, moderate bed slope is available, silted, bed is in natural condition, max. obstructions, and also drain walls are in moderate condition. The drain capacity is adequate for two year return period.
- •Near L.R. Nagar Slum the existing storm drain is having a wider catchment area, less paved, more time of concentration, drain width and depth is drastically reduced at few location, moderate bed slope is available, silted, and also drain is in natural condition, min. obstructions. The drain capacity is adequate for one year return period.

area, less paved area, more time of concentration, drain width and depth is drastically reduced, moderate bed slope is available, silted, and also drain is in natural condition, min. obstructions. The drain capacity is very inadequate.

- •Near Ring Road the existing storm drain is having a wider catchment area, more paved area, less time of concentration, drain width and depth is drastically reduced, moderate bed slope is available, silted, and also drain is in natural condition, min. obstructions. The drain capacity is very inadequate.
- •Near Koramangala Layout the existing storm drain is having a wider catchment area, more paved area, less time of concentration, drain width and depth is drastically reduced, very flat bed slope is available, silted, and also drain walls are in moderate condition, max. obstructions. The drain capacity is very inadequate.
- •Near S.T. Bed Layout & Jakkasandra the existing storm drain is having a wider catchment area, more paved area, less time of concentration, drain width and depth is drastically reduced, very flat bed slope is available, silted, and also drain walls are in moderate condition, max. obstructions. The drain capacity is very inadequate.

→Tavarekere Valley:

- •Near NIMHANS hospital the existing storm drain is having a smaller catchment area, more open space, more time of concentration, sufficient drain width and depth, good bed slope is available, moderately silted, bed is in natural condition, few obstructions. The drain capacity is adequate for twenty year return period.
- •Near Fire service college the existing storm drain is having a smaller catchment area, less time of concentration, drain width and depth is reduced, moderate bed slope is available, silted, bed is in natural condition, few obstructions and also drain walls are in good condition. The drain capacity is adequate for only one year return period.
- •Near Bismillahanagar the existing storm drain is having a comparatively larger and dense builtup catchment area, less time of concentration, drain width and depth is drastically reduced at few places, moderate bed slope is available, silted, bed

is in natural condition, more obstructions and also drain walls are in moderate condition. The drain capacity is very inadequate.

- •Near Tavarekere & Chikka Madivala the existing storm drain is having a moderately larger and dense builtup catchment area, less time of concentration, sufficient drain width and depth, flat bed slope, silted, bed is in natural condition, few obstructions and also drain walls are in moderate condition. The drain capacity is adequate for two year return period.
- •Near central silk board the existing storm drain is having a moderately larger catchment area, less time of concentration, drain width and depth is slightly reduced, moderate bed slope is available, silted, bed is in natural condition, max. obstructions and also drain walls are in moderate condition. The drain capacity is adequate for one year return period.
- •Near H.S.R. layout the existing storm drain is having a larger catchment area, less time of concentration, drain width and depth is reduced at few places, very flat bed slope, silted, bed is in natural condition, less obstructions and also drain walls are in moderate condition. The drain capacity is adequate for two year return period.
- •Near Agara tank the existing storm drain is having a larger catchment area with more open space, more time of concentration, sufficient drain width and depth, moderate bed slope, silted, bed is in natural condition, less obstructions and also drain walls are in good condition. The drain capacity is adequate for two year return period.
- •Near J.P. Nagar the existing storm drain is having a larger catchment area with more open space, more time of concentration, sufficient drain width and depth, moderate bed slope, silted, bed is in natural condition, less obstructions and also drain walls are in moderate condition. The drain capacity is adequate for two year return period.

•Near Madivala Tank the existing storm drain is having a larger catchment area with more open space, more time of concentration, drain width and depth is drastically reduced, moderate bed slope, silted, drain is in natural condition. The drain capacity is inadequate.

>Cross Drains:

Existing culverts based on their structural conditions, no. of vents, no. of utilities laid across SWD at the culvert location which in turn causing obstruction for free flow of water were identified during reconnaissance survey and further analysed for their carrying capacity.

Table 4.3 & 4.4 shows the carrying capacity (Q) near the culverts along with all other data required to derive the same. The procedure adopted to workout the required data are furnished below:

- 1.Adequacy check is carried out under clean condition only, since the drains on either side of the culvert are presumed to be free of silt and vegetation to achieve optimum carrying capacity.
- 2.Dimensions shown in the table is the existing dimensions and the vent way considered is actually collected from site, and accordingly vent way has been worked out.
- 3.Bed levels at culvert location could not be measured due to flow of water. The bed slope in the direction of flow is assumed as 1 in 500 (0.002), which may produce a reasonable velocity of flow through the vent way to prevent deposition of silt and scouring action.
- 4. Free board is taken as 0.1 m. for one, two, five, ten & twenty year storms.
- 5. The percentage area reduction at the vent way of the culvert with reference to the upstream side drain area are worked out for reference and guidance.
- 6.Coefficient of roughness(n) is considered as 0.02 (Clean condition) & 0.035 (Unclean condition).

both upstream and down stream side (near the culvert locations) for the length of about 100 m.

The remarks column of these tables, indicates the existing culvert which are inadequate to carry the design runoff and such culverts are found to be very few. The culverts which are considered to be inadequate were jointly site inspected with BMP officials and various options were explored to increase the carrying capacity before deciding for remodelling.

The existing culvert in Koramangala main valley & Tavarekere valley which are considered to be inadequate are listed in Table -4.5

The inspection details of these existing culverts/bridges is enclosed in Volume 2 - Condition Survey.

Based on the assessment, 20 culverts which were in moderate condition and drastically obstructing the flow, has been shortlisted and considered for reconstruction. Out of 20 culverts 2 culverts i.e., near Austin town & J.P. Nagar Dollars Colony are newely proposed, based on BMP requirements and also for about 6 culverts, rehabilitation works like provision of hand rails etc., has been proposed.

The detailed designs and estimates of these culverts / bridges is enclosed in Volume 3 and relevant drawings in Volume 4. The list of culverts / bridges proposed for reconstruction is as listed below and the same is depicted in Figure 4.1.

Remodelling of Primary and Secondary Storm Water Drains in Bangalore City Koramangala Valley – Project Report - Chapter

			Valley	
SI. No.	Culvert No.	Chainage (m.)	Location	Remarks
Korama	ngala Valley Pri		Drain (K100) :	
1	KMC - 6	3500	Kengal Hanumanthaiah Road	Ex. Culvert/Bridge considered for remodelling
2	KMC – 9	4950	Bannerughatta Road, Near Vinayakanagar	Ex. Culvert/Bridge considered for remodelling
Austin ⁻	Town Seconda	ry Storm Dra	in (K103) :	-
1	KMS-7 C3	1690	Airport Road (Palm grove Road)	Ex. Culvert/Bridge considered for remodelling
2	KMS-7 C7	2316	Old Race Course Road	Ex. Culvert/Bridge considered for remodelling
3	N - 1	2765	Austin Town, near BDA / Mecon Qtrs.	Proposed New Bridge
Kalasip	alya Secondary	/ Storm Drain	n (K112) :	
1	KMS-1 C1	175	Mavalli Tank Bund Road	Ex. Culvert/Bridge considered for remodelling
2	KMS-1 C3	450	Journalist Colony, 5 th Cross Road	Ex. Culvert/Bridge considered for remodelling
3	KMS-1 C4	525	Journalist Colony, 4 th Cross Road	Ex. Culvert/Bridge considered for remodelling
4	KMS-1 C5	575	Journalist Colony, 3 rd Cross Road	Ex. Culvert/Bridge considered for remodelling
5	KMS-1 C6	635	Journalist Colony, 2 nd Cross Road	Ex. Culvert/Bridge considered for remodelling
6	KMS-1 C7	700	Journalist Colony, 1 st Cross Road	Ex. Culvert/Bridge considered for remodelling
Tavarek	ere Valley Prim	nary Storm D	rain (K200) :	
1	KMC-2 C7	2015	Bismillahanagar	Ex. Culvert/Bridge considered for remodelling
2	KMC-2 C17	3225	Maruthinagar, Near Madivala	Ex. Culvert/Bridge considered for remodelling
Madiva	a Secondary S	torm Drain (P	(204) :	
1	KM2S4- C1	0	Near Madivala	Ex. Culvert/Bridge considered for remodelling
2	KM2S4- C2	214	Near B.T.M. Layout	Ex. Culvert/Bridge considered for remodelling
3	KM2S4- C3	260	35 th Main Road, Near B.T.M. Layout	Ex. Culvert/Bridge considered for remodelling
4	KM2S4- C4	410	38 th Main Road, Near B.T.M. Layout	Ex. Culvert/Bridge considered for remodelling
Tavarek	ere Secondary	Storm Drain	(K205) :	
1	KM2S3- C2	175	Tavarekere	Ex. Culvert/Bridge considered for remodelling
Gurupp	anapalya Seco	ndary Storm	Drain (K206) :	
1	KM2S2- C5	1119	Near Bapujinagar	Ex. Culvert/Bridge considered for remodelling
J.P. Na	gar Secondary	Storm Drain	(K209) :	
1	N -2	1775	3 rd Cross, J.P. Nagar Dollars Colony	Proposed New Bridge
	•			

Remodelling of Primary and Secondary Storm Water Drains in Bangalore City ${\it 4}$

Table	- 4.6 Lis	st of Culve	erts / Bridges Considered fo	r Providing Rehabilitation in
			Koramangala Valley	
		Impro	vements to Existing Culverts / B	ridges
SI. No.	Culvert No.	Chainage (m.)	Location	Remarks
Korama	ngala Valley Pr	imary Storm	Drain (K100) :	
1	KMC - 5	3030	2 nd Cross, Sudhamanagar	Provision of handrails / Parapet wall
Tavarek	ere Valley Prim	ary Storm Dr	ain (K200):	
1	KMC2-C8	2075	Bismillahanagar	Provision of handrails / Parapet wall
2	KMC2-C9	2109	Bismillahanagar	Provision of handrails / Parapet wall
3	KMC2-C10	2126	Bismillahanagar	Provision of handrails / Parapet wall
4	KMC2-C11	2163	Bismillahanagar	Provision of handrails / Parapet wall
5	KMC2-C12	2188	Bismillahanagar	Provision of handrails / Parapet wall
Gurupp	anapalya Seco	ndary Storm	Drain (K206) :	
1	KM2S2- C2	525	Near Bapujinagar	Provision of handrails / Parapet wall
2	KM2S2- C3	-	Near Bapujinagar	Provision of handrails / Parapet wall

4.3 STRATEGIC ACTIONS AND RECOMMENDATIONS:

>KORAMANGALA MAIN VALLEY:

- •The existing drain near Upparpet, Akkipet, Mamulpet, & Sulthanpet upto K.R. Market is almost covered, which needs to be opened at regular intervals, desilted and steel gratings has to be provided at all the road crossings.
- •Tertiary drains at some strategic locations i.e., near Upparpet, Akkipet, Mamulpet, & Sulthanpet upto K.R. Market needs to be desilted and regarded to match with the new drain bed level.
- •Since, the existing drain passes through dense built up and highly commercial area, large quantity of solid waste that is noticed inside the drain needs to be cleaned very frequently.
- •The covered reach of drain needs to be opened, desilted and widened near Sourastrapete.
- •The drain reach near N.R. Road needs to be desilted and steel gratings to be provided at regular interval.

- •Large quantity of sewage i.e., discharged from commercial establishments near Kalasipalya needs to be stopped immediately.
- •Existing tertiary drain network in Bamboo bazar area needs to be desilted and remodeled to match the new drain bed level.
- •The existing drain reach near Kalasipalya (Bamboo bazar) needs to widened and new wall to be constructed.
- •All openings made to the drain wall needs to be closed in this region to avoid back flow of water.
- •Large number of utility lines noticed under the stair case of commercial building near 1st Main J.C. Road needs to be relocated.
- •The drain reach near J.C. Road is totally covered, which needs to be opened at regular interval and desilted.
- •Caution boards and sign boards needs to be displayed to create awareness among people about storm drain and its management near Kalasipalya, J.C. Road & Sudhamanagar.
- •The public toilet block noticed near Sudhamanagar needs to be relocated.
- •Existing tertiary drain network in Sudhamanagar area needs to be desilted and remodeled to match the new drain bed level.
- •The vent way of the existing culvert across Lalbagh road needs to be desilted.
- •The existing drain reach near Annipura needs to widened and new wall to be constructed on right hand side.
- •All openings made to the drain wall needs to be closed in this region to avoid back flow of water.

- •The utility lines noticed near K.H. Road culvert location to be relocated and also the existing culvert with multiple spans needs to be reconstructed with single span.
- •Large quantity of silt accumulation and vegetation growth noticed near K.S.R.T.C. workshop needs to be cleaned.
- •Sewerage system and solid waste management system in this area needs to be improved.
- •Rehabilitation works to the drain walls, to be provided near Vinayakanagar.
- •Existing tertiary drain network in Vinayakanagar & Pothalappa garden area needs to be desilted and remodeled to match with the new drain bed level.
- •The existing culverts with multiple spans constructed across storm drain at Bannerghatta road needs to be reconstructed.
- •Caution boards and sign boards needs to be displayed near Vinayakanagar & Pothalappa garden to create awareness among people about storm drain and its management.
- •The existing service road on right hand side has been encroached and residential buildings have been constructed near Hosur Road, which needs to be cleared and service road to be restored for maintenance of drain.
- •Service lines noticed near the Hosur Road & Bannerghatta Road culvert locations needs to be relocated.
- •Solid waste management in this region needs to be improved.
- •All openings made to the drain wall needs to be closed in this region to avoid back flow of water.
- •The drain reach near Lakshman Rao Nagar slum is in natural condition, it needs to be widened, alignment of drain to be slightly altered and stone pitching to be provided on both sides.

- •The sewage flow noticed from adjoining Annepalya layout & L.R. Nagar slum needs to be stopped immediately.
- •The drain reach i.e., down stream of Viveknagar bridge is in natural condition, it needs to be widened, alignment of drain to be slightly altered and new wall to be constructed on both sides.
- •The sewage flow noticed from adjoining Ejipura layout & Indira Gandhi slum needs to be stopped immediately.
- •The covered reach of drain behind National Games Village needs to be desilted.
- •The drain reach on left side, behind National Games Village is in natural condition, it needs to be widened and new wall to be constructed.
- •The drain reach behind BMTC Bus depot is in natural condition, it needs to be widened, alignment of drain to be slightly altered and new walls to be constructed on both sides.
- •The drain reach behind Everest High School upto Inner Ring Road is in natural condition, it needs to be widened, alignment of drain to be slightly altered and new walls to be constructed on both sides.
- •The drain reach down stream of Inner Ring Road is in natural condition, it needs to be widened and new walls to be constructed on both sides.
- •Existing tertiary drain network in Ejipura, S.T. Bed, Koramangala Layout & Jakkasandra area needs to be desilted and remodeled to match the new drain bed level.
- •The drain reach near ST bed layout needs to be desilted and minor rehabilitation works to the drain wall to be provided.
- •Approach bridges constructed by private apartment owners with multiple spans need to be replaced with single span.

•Service lines laid across storm drain by private apartment needs to be relocated.

- •From Koramanagala Layout, the existing drain to be widened, alignment needs to be slightly altered upto Bellandur tank and stone revetment has to be provided.
- •Encroachment / Development of land near the tank bed needs to be prevented.
- •Provision for future drain requirement and also for service roads needs to be demarcated.

>KORAMANGALA MAIN VALLEY SECONDARY STORM DRAINS:

>Koramangala Layout - I drain - K101:

- •The existing closed drain near Koramangala Layout needs to opened at regular interval, desilt and steel gratings needs to be provided at regular intervals.
- •Existing drain reach near Ejipura church road bridge needs to be widened and new wall to be constructed on right side.
- •Minor rehabilitation works needs to be provided at open drain locations.
- •Existing tertiary drain network needs to desilted and regraded to match with the new drain bed level.

>Koramangala Layout - 2 drain - K102:

- •The existing closed drain near Jyothi Nivas college needs to opened at regular interval, desilt and steel gratings needs to be provided at regular intervals.
- •Minor rehabilitation works needs to be provided at open drain locations.
- •Existing tertiary drain network needs to desilted and regraded to match with the new drain bed level.

>Austin Town drain – K103:

- •The existing closed drain near Shoppers stop commercial complex needs to opened at regular interval, desilt and steel gratings needs to be provided at regular intervals.
- •Drain reach near Kendriya Vidayalaya needs to be widened on right hand side and new wall to be constructed.
- •Existing culvert constructed across SWD near Victoria road needs to be replaced with single span culvert.
- •The existing closed drain noticed near Palm grove road, Austin town needs to opened at regular interval, desilt and steel gratings needs to be provided at regular intervals.
- •Drain reach near K.P.T.C.L office needs to be widened on left side and new wall to be constructed.
- •After drain desilting drain bed protection needs to be provided for full length & width.
- •Existing sewer pipe line and manholes noticed near Rose garden needs to be lowered.
- •Openings made to the drain walls needs to be closed.
- •Existing tertiary drain network needs to desilted and regraded to match with the new drain bed level.
- •Minor rehabilitation works to be attended and bed protection to be provided.

>Laksandra drain – K104:

- •Existing drain needs to be widened on left side and new wall to be constructed near Pukraj layout.
- •The existing closed drain near MICO factory complex needs to opened at regular interval, desilt and steel gratings needs to be provided at regular intervals.

- •Drain reach near N.D.R.I. needs to be widened on left side and new wall to be constructed.
- •After drain desilting drain bed protection needs to be provided for full length & width.
- •Openings made to the drain walls needs to be closed.
- •Existing tertiary drain network needs to desilted and regraded to match with the new drain bed level.
- •Minor rehabilitation works to be attended and bed protection to be provided.

>Lakshamma garden drain – K107:

- •The existing closed drain near Langford town needs to opened at regular interval, desilt and steel gratings needs to be provided at regular intervals.
- •Existing tertiary drain network needs to desilted and regraded to match with the new drain bed level.

Siddapura drain – K108:

- •Dumping of vegetation droppings near Someshwara nagar by private horticulture nursery's needs to be prevented immediately.
- •Drain reach near Marigowda layout needs to be widened on right side and new wall to be constructed.
- •The existing closed drain near Hombegowdanagar girls high school needs to opened at regular interval, desilt and steel gratings needs to be provided at regular intervals.
- •Drain reach near Wilson garden needs to be widened on right side and new wall to be constructed and further it needs to be covered by RCC slab..
- •After drain desilting drain bed protection needs to be provided for full length & width.

•Openings made to the drain walls needs to be closed.

- •Existing tertiary drain network needs to desilted and regraded to match with the new drain bed level.
- •Minor rehabilitation works to be attended.
- •Utility lines noticed near Wilson garden needs to be relocated.
- •Sewerage system needs to extended to entire locality near Venkatareddy layout.
- >Raja Ram Roy Extn. drain K109:
- •Existing drain needs to be widened on both side and new wall to be constructed near Sampangiramnagar.
- •The existing closed drain near Bangalore Institute of Oncology needs to opened at regular interval, desilt and steel gratings needs to be provided at regular intervals.
- •Openings made to the drain walls needs to be closed.
- •Existing tertiary drain network needs to desilted and regraded to match with the new drain bed level.
- >Lalbagh Secondary drain K110:
- •Existing drain needs to be widened on left side and new wall to be constructed near labour commissioners office at Sudhamanagar.
- •The existing closed drain near Hosur Road needs to opened at regular interval, desilt and steel gratings needs to be provided at regular intervals.
- •After drain desilting drain bed protection needs to be provided for full length & width.

•Openings made to the drain walls needs to be closed.

- •Existing tertiary drain network needs to desilted and regraded to match with the new drain bed level.
- •Minor rehabilitation works to be attended.

>Jayanagar Secondary drain – K111:

- •The existing closed drain near Vijaya College & R.V. Road needs to opened at regular interval, desilt and steel gratings needs to be provided at regular intervals.
- •Existing tertiary drain network needs to desilted and regraded to match with the new drain bed level.

>Kalasipalya Secondary drain – K112:

- •Existing drain reach needs to desilted.
- •Utility lines noticed at the culvert location near Kalasipalya cross roads & A.M. Road needs to relocated.
- •Existing culvert noticed near Kalasipalya cross roads & A.M. Road needs to replaced with single span box culverts.
- •After drain desilting drain bed protection needs to be provided for full length & width.
- •Openings made to the drain walls needs to be closed.
- •Existing tertiary drain network needs to desilted and regraded to match with the new drain bed level.
- •Minor rehabilitation works to be attended.

> Rajendranagar Secondary drain – K113:

•Existing drain reach needs to desilted.

- •Drain reach near Muneshwara temple which is natural condition needs to widened on both sides and new wall to be constructed on both sides.
- •After drain desilting drain bed protection needs to be provided for full length & width.
- •Openings made to the drain walls needs to be closed.
- •Existing tertiary drain network needs to desilted and regraded to match with the new drain bed level.
- •Minor rehabilitation works to be attended.

>Akkithimmanahalli Secondary drain – K114:

- •Existing covered drain reach needs to opened at regular interval and desilted. Further steel grating needs to be provided at regular interval
- •Manholes constructed inside the drain needs to be relocated.
- •After drain desilting drain bed protection needs to be provided for full length & width.
- •Openings made to the drain walls needs to be closed.
- •Existing tertiary drain network needs to desilted and regraded to match with the new drain bed level.
- •Minor rehabilitation works to be attended.

>TAVAREKERE VALLEY:

- •Drain reach near Bairasandra & Mundukar fire service college needs to be desilted and widened.
- •Dumping of debris inside the storm drain needs to be avoided.
- •Sewer pipelines and manholes that are constructed inside the drainage channel near Saduguntepalya needs to be relocated.

- •Drain reach near Bismillahanagar is in natural condition, at few locations new wall to be constructed on both side.
- •New RCC box drain has to be constructed at Saduguntepalya upto Bismillahanagar and which act as a bypass drain.
- •Existing tertiary drain network in Bismillahanagar area needs to be desilted and remodeled to match with the new drain bed level.
- •Drain width near Lakshmi theater is very narrow, it needs to be widened and new wall to be constructed.
- •Drain width near Tavarekere is very narrow, it needs to be widened and new wall to be constructed.
- •Liquid wastes that is being directly discharged into storm drains from dyeing industries in Tavarekere needs to be prevented.
- •Caution boards and sign boards needs to be displayed near Bismillahanagar & Tavarekere area to create awareness among people about storm drain and its management.
- •Solid waste management in this region needs to be improved.
- •K.P.T.C.L. transformer that is installed near Lakshmi theater needs to be relocated and drain has to be widened.
- •Parapet walls to be constructed for the existing culverts near Bismillahanagar.
- •The drain reach near KPN travels depot in Kuvempunagar area is very inadequate, and it needs to be widened and new wall to be constructed.
- •Solidwaste management system near Maruthinagar, Chikka Madivala needs to be improved.

[•]Existing sewerage system in Bismillahanagar and its adjoining areas has to be STUP Consultants P. Ltd. Page No.

extended to the entire locality and also it has to be ensured that all the houses are connected to the system.

- •The existing bridge near central silk board junction flyover opposite to WIPRO needs to be remodelled.
- •Minor rehabilitation works to be provided to the existing drain wall near HSR layout.
- •The drain reach near HSR layout needs to be desilted.
- •The drain reach near Jakasandra (beyond Sarjapur road) is in natural condition, it needs to be widened and alignment of drain needs to be slightly altered upto Bellandur tank.

>TAVAREKERE VALLEY SECONDARY STORM DRAINS:

>Vanaganahalli Secondary drain – K201:

- Existing drain reach needs to desilted.
- Large quantity of vegetal growth noticed inside storm drain near HSR layout needs to be cleared immediately.
- •After drain desilting drain bed protection needs to be provided for full length & width.
- •Openings made to the drain walls needs to be closed.
- •Existing tertiary drain network needs to desilted and regraded to match with the new drain bed level.
- Minor rehabilitation works to be attended.

>Yellukunte Secondary drain – K202:

Existing drain reach needs to desilted.

•Openings made to the drain walls needs to be closed.

- •Existing tertiary drain network needs to desilted and regraded to match with the new drain bed level.
- •Minor rehabilitation works to be attended.

>H.S.R. Layout Secondary drain – K203:

- •Existing drain reach needs to desilted.
- •Drain width needs to be widened on left side near H.S.R. Layot sector VI.
- •After drain desilting drain bed protection needs to be provided for full length & width.
- •Openings made to the drain walls needs to be closed.
- •Existing tertiary drain network needs to desilted and regraded to match with the new drain bed level.
- •Minor rehabilitation works to be attended.

>Madivala Secondary drain – K204:

- •Existing drain reach needs to desilted.
- •RCC hume pipe culverts noticed near B.T.M. layout bus stop needs to be replaced with single span RCC box culvert.
- •After drain desilting drain bed protection needs to be provided for full length & width.
- •Openings made to the drain walls needs to be closed.

[•]Existing tertiary drain network needs to desilted and regraded to match with the new STUP Consultants P. Ltd. Page No.

drain bed level.

•Minor rehabilitation works to be attended.

>Tavarekere Secondary drain – K205:

•Existing drain reach needs to desilted.

•After drain desilting drain bed protection needs to be provided for full length & width.

- •Openings made to the drain walls needs to be closed.
- •Existing tertiary drain network needs to desilted and regraded to match with the new drain bed level.

•Minor rehabilitation works to be attended.

>Guruppanapalya Secondary drain – K206:

- •Existing drain reach needs to desilted.
- •Drain reach near Urs colony needs to be widened on right side and new wall to be constructed.
- •After drain desilting drain bed protection needs to be provided for full length & width.
- •Openings made to the drain walls needs to be closed.
- •Existing tertiary drain network needs to desilted and regraded to match with the new drain bed level.

•Minor rehabilitation works to be attended.

>Krishnappa Garden Secondary drain – K207:

- •Existing drain reach needs to desilted.
- •Existing covered drain near Krishnappa garden needs to be opened at regular interval, desilted and steel grating needs to be provided at regular interval.
- •After drain desilting drain bed protection needs to be provided for full length & width.
- •Drain reach near Bairasandra tank is in natural condition, drain alignment to be slightly altered and widened on left side and new wall to be constructed on both side.
- •Existing tertiary drain network needs to desilted and regraded to match with the new drain bed level.
- •Minor rehabilitation works to be attended.

>Law college Secondary drain – K208:

- •Existing drain reach needs to desilted.
- •After drain desilting drain bed protection needs to be provided for full length & width.
- •Openings made to the drain walls near Tilaknagar needs to be closed.
- •Existing tertiary drain network needs to desilted and regraded to match with the new drain bed level.
- •Minor rehabilitation works to be attended.

>J.P. Nagar Secondary drain – K209:

•Existing drain reach needs to desilted.

•After drain desilting drain bed protection needs to be provided for full length & width.

- •Openings made to the drain walls needs to be closed.
- •Existing tertiary drain network needs to desilted and regraded to match with the new drain bed level.
- •Minor rehabilitation works to be attended.
- •Dense vegetation growth noticed near Madivala tank bed needs to cleared immediately.
- •Drain reach near Madivala tank, Kodichikkanahalli, Bannerghatta road is in natural condition needs to be widened on both sides and stone revetment needs to be provided on both sides.

•Service road needs to be formed.

- •Sewerage system needs to be extended for the entire locality near NGR layout in C.M.C. Area.
- •Drain reach near Rupena Agrahara needs to be altered and new wall to be constructed on both side.
- •Drain reach adjoining NH 7 needs to widened and new wall to be constructed on right side.

>Puttanahalli Secondary drain – K210:

- •Existing drain reach needs to desilted.
- •Large quantity of vegetal growth noticed inside storm drain near J.P. nagar needs to be cleared immediately.
- •After drain desilting drain bed protection needs to be provided for full length & width.
- •Openings made to the drain walls needs to be closed.

•Existing tertiary drain network needs to desilted and regraded to match with the new drain bed level.

•Minor rehabilitation works to be attended.

4.4 MITIGATIVE MEASURES FOR LOW LYING AREAS:

4.4.1 L.I.C. Colony & Krishnappa Garden

Mitigative Measures

- Road side drain water from Krishnappa garden needs to be collected on eastern side of R.B.I. Colony and then be rerouted through Byrasandra tank (Forest area covered drain).
- >Drain wall needs to be constructed for the portion of drain, which is in natural condition to channelise the flow of water, with proper bed protection.
- >Large quantity of debris noticed inside the water coarse area near the tank needs to be removed for easy flow of water
- >The drain reach near the joining point of K207 and K2 is to be widened by acquiring land from Fire Service Training College.

4.4.2 Sampangiramnagar :

Mitigative Measures

- >In the covered reach of drain, prefabricated steel gratings and inspection opening needs to be installed at regular interval for surface runoff water to enter into storm drain & desilting.
- The alignment of existing should be slightly altered, drain should be re-routed and an RCC box drain needs to be constructed through Ist Cross Srinivas Colony, which intern avoids the 90 degrees turning noticed near the residential building and also the the existing drain near Sampangiram Nagar 4th Main width becomes adequate

to cater for upstream flow.

4.4.3 Shanthinagar:

Mitigative Measures

- >The existing sewer line noticed to be re-routed & manhole to be lowered upto the bed level.
- >Supporting arrangement for covered drains to be investigated and intermediate supports, if any, should be dismantled and covering slabs to be supported only on drain side walls.
- >In the covered reach of drain, prefabricated steel gratings and inspection opening needs to be installed at regular interval for surface runoff water to enter into storm drain & desilting.
- Portion of existing drain needs to be re-routed at Lakshmi Road bridge location towards the 4th cross and further it has to be taken in 4th cross road, by widening the existing road side drain upto B.M.T.C. compound wall, and further the existing drain needs to be desilted upto primary drain location.

4.4.4 Bismillahanagar:

Mitigative Measures

- >The vent size of existing culverts constructed across storm drain near Bismillahnagar and Balajinagar to be improved.
- >The drain width should be increased by demolishing unauthorized constructions.
- >Bed protection to be provided for the entire length of drain in this region for smooth flow of water.

>RCC box drain should be constructed in front of christ school to divert peak runoff

water.

4.4.5 BTM Layout & Dollars Colony, Near Central Silk Board:

Mitigative Measures

- >The existing culvert at central silk board junction across the ring road and Hosur road needs to be remodeled.
- >Bypass drain directly connecting to the drain on H.S.R. Layout side ring road should be constructed, which will intern reduce the risk of overflow of drain into Dollars colony layout.
- >A peripheral drain of length of around 800 m along the 20th Main Road, BTM layout shall be constructed to prevent the outside water entering the area.
- >Emergency squad, equipped with truck mounted pumping arrangement and standby power generator should be readily made available during rainy season, to evacuate the water from the intake well / lowest point and discharge it to outside main drain.

4.4.6 Siddapura & Wilson Garden (Ward No. 61)

Mitigative Measures:

- >The covered portion of existing SWD from Hombegowdanagar girls junior college upto a location where this secondary storm drain (K108) joins Koramangala valley primary storm drain (K100) near Wilson garden needs to be desilted and widened.
- >The alternative option of re routing the drain by constructing RCC box drain in Wilson garden upto secondary storm drain.
- Garbage and debris dump noticed inside the drain near Venkatareddy layout needs to be cleared and further, the drain reach which are in natural condition inside the bylanes needs to be replaced with RCC drain with proper gradient and accordingly regrade all other road side drains in this layout and connect it to existing secondary

storm drain (K108).

- >The concerned authority should extend the existing sewerage system to the entire locality to prevent entry of sewage into existing SWD.
- Stacking of solid waste by horticulture nursery owners adjacent to storm drain needs to be prevented immediately, if not during heavy storms it gets carried into SWD and causes blockages and pose serious problems further down stream.
- >Caution boards/display boards has to be installed to educate and create public awareness regarding storm water and storm drain management.
- Emergency squad, equipped with truck mounted pumping arrangement and standby power generator should be readily made available during rainy season, to evacuate the water from the intake well / lowest point and discharge it to outside main drain.

4.4.7 Journalist Colony & Sudhamanagar (Ward No. 48)

Mitigative Measures:

- >The existing secondary storm water drain (K112) starting from Parvathipura and further flowing through Journalist colony needs to be desilted.
- The culverts constructed across storm drain (K112) near Mavali tank bund road, A.
 M. Road, 1st to 5th Cross road Kalasipalyam extension needs to be remodelled to provide access for free flow of water.
- >Utility crossing laid across storm drain near A.M. Road, 4th Cross Kalasipalya extn. needs to be relocated to avoid accumulation of solid wastes obstructing free flow of water.
- >The condition of the bridge constructed across J.C. Road is very old and also with multiple spans. It needs to be opened at regular interval and desilt

The reach of storm drain, below the commercial establishments (Pooja Marketing), STUP Consultants P. Ltd.
Page No.

near J.C. Road needs to be desilted.

- The community toilet block constructed over storm drain (near Nala Road) needs to be relocated & proper drainage arrangement has to be provided to prevent raw sewage entering storm drain. Further, the support structures of this toilet block is obstructing free flow of water, which requires to be relocated in order to provide access for free flow of water.
- Large quantity of vegetal growth noticed near Lalbagh road (Culvert) needs to be cleared immediately in order to improve the carrying capacity of Kormangala valley primary storm drain.
- The existing culvert constructed across storm drain near K.H. Double road needs to be remodelled and further the utility lines located at this location needs to be relocated in order to provide access for free flow of water in Koramangala valley primary drain.
- Garbage and solid waste noticed in the secondary storm drain (K109) from Mission Road upto Sudhamanagar needs to be desilted and further unauthorised constructions over storm drain needs to be cleared, in order to provide free access for schedule maintenance of storm drain.
- >Avoid laying of utility lines across/inside the storm drain.
- >Caution boards/display boards needs to be installed to educate and create public awareness regarding storm water and storm drain management.
- >Plug all openings in the drain walls and create separate tertiary drain to lead off the storm water to down stream.

4.4.8 Ejipura, Koramangala & S.T. Bed Area (Ward No. 67 & 68) Mitigative Measures:

In order to minimise the flooding problems the following measures are proposed to achieve long term advantages.

- >Initially the existing curved drain shall from chainage 8175m to 8225m shall be straightened.
- >At places where the drain walls do not exists, wall to be constructed.
- >Wherever possible the drain shall be widened from down steam end.
- >All obstructions like private bridges from chainage 9625 to 10150 obstructing the waterway in the drain shall be remove.
- >From chainage 10250m the drain out let shall be provided with bell mouth and a Kucha drain shall be dug upto Bellandur lake from the bellmouth outlet.
- >Drain shall be cleared of all debris, solid waste and the sane shall be maintained.

Phase II

Even after carrying out the Phase I activity the drain sizes are inadequate to carry the storm water from upstream. Therefore alternate routes were studied to carry the additional storm flow. One route identified and surveyed is taking a diversion after the Ejipura bridge at chainage 6925m. In this proposal it is suggested to construct covered RCC box drain of size 6.0m x 3.0m with openings at regular interval for maintenance in Ejipura main road for a length of 750m and further down it is proposed to continue with open channel in the Defence land for a length of 1800m before finally discharge into the Bellandur lake through Marshy land. For the purpose the Defence land needs to be acquired. The drain needs to cross the inner ring road with a box drain. Due to the restriction in road width of Ejipura main road the drain size to be restricted to maximum of 6.0m even though higher size is possible in Defence land.

The details of the proposed alignment of drain is enclosed in drawing SK - 01.

Phase III :

Due to restriction in drain width along Ejipura main road to achieve higher return period a separate drain of size 6.0m x 3.0m is also proposed from chainage 5800m in Laksmanrao slum off Audugodi. It is proposed to take the drain through Bangalore Nandini Dairy farm, Rajendranagar slum, along Koramangala 80 feet road after crossing the inner ring road at chainage to S.T. Bed and through the Marshy land to Bellundur lake. At chainage 9500m of the existing drain the vacant land on either sides of the drain need to be acquired for taking the drain from 80 feet road to S.T.Bed. At chainage 9500m of the existing drain, the proposed drain intersects the existing drain and the flow gets divided through the existing drain and the proposed drain. The total box drain length is around 3500m. From this point in marshy land till Bellandur lake drain can be in open Kucha condition.

This drain will intercept storm water from entire Koramangala area, reducing the load on the existing drain and prevent flooding in 80 feet road. For the purpose suitable gratings, inspection covers and access for cleaning the drain are proposed at regular intervals.

Even after carrying out the above recommendations the places which are below HFL of the drain will have some flooding problem due to non draining of the area. But the flooding problem will get reduced as the overflow from the main drain gets reduced. At the same time by providing additional drains in Defence land and in Koramangala 80 feet road will prevent the outside water entering these areas. Along with the above improvement activities the following are need to be considered.

In general, the following few best storm drain management practices need to be adopted to achieve the objective of storm drainage system in this region.

- >The concerned authority should extend the existing sewerage system to the entire locality to prevent entry of sewage into existing SWD.
- >Debris and garbage dump noticed inside the existing storm drain has to be cleared immediately before monsoon.
- >Avoid developmental activities below HFL of SWD.
- >Prevent stacking/dumping of building materials near the storm drain
- Nos. of approach bridges constructed and utility crossings laid across existing SWD by apartment owners in Koramangala layout has to be immediately removed/relocated to provide access for free flow of water.
- >Do not allow stacking the desilted materials on the drain edge and convey it immediately from the site to the specified dumping site.
- > Prevent any unauthorised construction near/inside the designated water carriageway.

>Avoid laying of utility lines across/inside the storm drain.

- >Caution boards/display boards needs to be installed to educate and create public awareness regarding storm water and storm drain management.
- >Emergency squads have to be formed before monsoon to provide necessary assistance to flood affected people during heavy storms.

4.5 BEST MANAGEMENT PRACTICES:

- >Implement pollution prevention methods.
- >Designate and implement minimum best management practices to protect water quality.
- >Implement a maintenance schedule for all structural controls designed to reduce pollutant discharges and the storm water conveyance system, to include:

•Inspection & removal of waste between May 1st and Sept. 30th.

- •Additional cleaning between October 1st and April 30th.
- •Records of cleaning and waste removal quantity.
- •Proper waste disposal.
- >Measures to eliminate discharges during maintenance & cleaning.
- >Limit infiltration from sanitary sewer to storm drains through routine maintenance.
- >Implement an Educational Program for all pertinent target audiences.
- >Inspect and clean catch basins and keep appropriate records.
- >Remove trash and debris from open channels and properly dispose of these materials to prevent them from being washed into receiving waters.
- >Report prohibited non-storm water discharges observed during the course of normal daily activities so they can be investigated, contained and cleaned up or eliminated.

- >Review maintenance activities to verify that appropriate storm water maintenance practices are being utilized.
- >Educate employees for pollution prevention techniques.
- Inspect and clean as needed all inlets/catch basins at least once every other year (at least 50% of the entire system inspected and cleaned each year)
- Inspect and clean as needed all inlets/catch basins in known problem areas at least once a year.
- >Inspect and clean as needed all storm drain lines in known problem areas at least once a year.
- >Inspect and clean as needed sumps and debris racks at pump stations, detention basins, drainage ditches and debris basins throughout the year.
- >Cleaning activities may occur on a year round basis, however, known problem areas shall be targeted prior to the rainy season.
- >Inspect and clean as needed all storm drain facilities that have been affected by emergency response activities.
- Additional cleanings shall be conducted as necessary during the non rainy season (Oct. 1st through April 30th).
- >Slide and Embankment Repair of Channels

To improve the section of the drain and to minimize the flooding problems in low lying areas, various drain improvement methods suggested are (Refer Table 4.6 for Analysis results):-

1. Increase the carrying capacity of existing tertiary drains.

2. Provision of cut off drain (bypass drains) around the low lying area to prevent

adjoining area water entering into the low lying area and construction of sump for pumping out water at a location closer to the main drains (downstream end) and also it should be located in such a way that it should be easily accessible by vehicles that are mounted with pump.

- 3. The improvement shall be taken up from the down stream of the valley. If remodeling works are commenced from upstream side, situation at the downstream end may get further aggravated.
- 4.Set-up a vigilance squad to prevent debris dumping, encroachment of drains, local obstruction, such as, pipe crossing, construction inside the drain, any discharges other than storm water.

Encourage rain water harvesting in institutions, public parks, open grounds, etc.,

	ion	Drain	Reach	Chain	age (m)	: Area		elocity ac		Discha	rges (Q in	m³/sec)		/.Drain in m.	Are	ea requir	red for d	lrain (A in	1 m²)	. Drain m.)		Require	d Drain V	Vidth (m)			Re	mark	s	
SI.No.	Description	From	То	From	То	Catchment A A (Ha.)	Type	Average Velocity V m/sec	1 year	2year	5year	10year		Existing Av. Depth D ir	1 year	2year	5year	10year	20year	Existing Av. Width W(1 year	2year	5year	10year	20year	1 year	2year	5year	10year	20year
1	K100	Upparpete	Avenue Road	0	1500	123.24	Pri.	1.6	6.82	9.46	12.19	14.56	17.78	1.6	4.26	5.92	7.62	9.1	11.11	3	2.66	3.7	4.76	5.69	6.95	AD	IA	IA	IA	IA
2	K100	Avenue Road	1 st Main J.C. Road	1500	2225	440.11	Pri.	2.42	24.81	34.46	44.4	53.07	64.74	1.96	10.25	14.24	18.35	21.93	26.75	5.66	5.23	7.26	9.36	11.19	13.65	AD	IA	IA	IA	IA
3	K100	1 st Main J.C. Road	Lalbagh Road	2225	2650	735.81	Pri.	1.75	36.28	50.5	65.25	78.25	94.85	2.39	20.73	28.86	37.29	44.71	54.2	7.84	8.67	12.07	15.6	18.71	22.68	IA	IA	IA	IA	IA
4	K100	Lalbagh Road	K.H. Road	2650	3350	1012.45	Pri.	2.28	40.36	56.21	72.7	87.28	105.57	2.4	17.7	24.66	31.89	38.28	46.3	11	7.37	10.27	13.29	15.95	19.29	AD	AD	IA	IA	IA
5	K100	K.H. Road	9 th Cross Wilson Garden Road	3350	4350	1269.49	Pri.	1.89	48.85	68.17	88.37	106.41	127.99	2.1	25.84	36.07	46.75	56.3	67.72	12.5	12.31	17.18	22.26	26.81	32.25	AD	IA	IA	IA	IA
6	K100	9 th Cross Wilson Garden Road	Vinayaka Nagar	4350	4700	1458.04	Pri.	1.57	48.85	68.17	88.37	106.41	127.99	1.7	31.11	43.42	56.28	67.78	81.53	12.5	18.3	25.54	33.11	39.87	47.96	IA	IA	IA	IA	IA
7	K100	Vinayaka Nagar	Hosur Road	4700	5200	1554.66	Pri.	2.24	54.02	75.32	97.52	117.27	141.43	1.95	24.12	33.62	43.54	52.35	63.14	20	12.37	17.24	22.33	26.85	32.38	AD	AD	IA	IA	IA
8	K100	Hosur Road	Rose Garden	5200	6600	1963.58	Pri.	1.89	65.47	91.54	118.93	143.63	171.83	1.76	34.64	48.43	62.92	76	90.91	21	19.68	27.52	35.75	43.18	51.66	AD	IA	IA	IA	IA
9	K100	Rose Garden	Vivek Nagar Bridge	6600	7050	2463.8	Pri.	2.17	71.68	100.36	130.64	158.15	188.36	2.5	33.03	46.25	60.2	72.88	86.8	15	13.21	18.5	24.08	29.15	34.72	AD	IA	IA	IA	IA
10	K100	Vivek Nagar Bridge	Ejipura Church Road Bridge	7050	8400	2647.67	Pri.	2	77.31	108.4	141.35	171.5	203.4	2.1	38.65	54.2	70.67	85.75	101.7	12	18.41	25.81	33.65	40.83	48.43	IA	IA	IA	IA	IA
11	K100	Ejipura Church Road Bridge	1 st Cross Koramangala / S.T. Bed	8400	9100	2922.64	Pri.	1.7	81.91	114.97	150.12	182.46	215.7	1.77	48.18	67.63	88.3	107.33	126.88	11.5	27.22	38.21	49.89	60.64	71.68	IA	IA	IA	IA	IA
12	K100	1 st Cross Koramangala / S.T. Bed	Bellandur Tank	9100	10900	3151.06	Pri.	1.8	88.22	124.01	162.21	197.62	232.62	2.02	49.01	68.89	90.12	109.79	129.23	13	24.26	34.11	44.61	54.35	63.98	IA	IA	IA	IA	IA
13	K101	Hosur Road	Koramangala Slum	0	2000	132.33	Sec.	2.14	8.53	11.77	15.03	17.77	22.13	1.68	3.99	5.5	7.02	8.3	10.34	3.32	2.37	3.27	4.18	4.94	6.16	AD	AD	IA	IA	IA
14	K103	M.G. Road	Neelasandra	0	3400	351.91	Sec.	1.99	16.39	23.06	30.19	36.81	43.25	1.27	8.24	11.59	15.17	18.5	21.73	11	6.48	9.12	11.95	14.56	17.11	AD	AD	IA	IA	IA
15	K108	Jayanagar 1 st Block	Wilson Garden	0	1925	188.55	Sec.	1.79	8.72	12.19	15.85	19.15	22.88	1.26	4.87	6.81	8.85	10.7	12.78	3.1	3.86	5.41	7.03	8.49	10.15	IA	IA	IA	IA	IA

Table 4.1 Showing Adequacy Analysis Results for Koramangala Main Valley - Existing Hydraulic Flow Conditions

16	K109	Kanteerava Stadium	R.R.M.Roy Extn.	0	2000	75.49	Sec.	1.43	4.27	5.95	7.7	9.24	11.17	1.64	2.98	4.16	5.38	6.46	7.81	3.5	1.82	2.54	3.28	3.94	3.94	AD	AD	AD	IA	IA
17	K110	Hosur Road	Sudhama Nagar	0	625	105.2	Sec.	1.45	5.18	7.14	9.11	10.74	13.42	1.4	3.57	4.92	6.28	7.41	9.26	1.8	2.55	3.52	4.49	5.29	6.61	IA	IA	IA	IA	IA
18	K112	Paravathipura	Kumbaragundi	0	715	81.73	Sec.	1.83	5.65	7.76	9.84	11.54	14.6	1.77	3.09	4.24	5.38	6.31	7.98	3.92	1.75	2.39	3.04	3.56	4.51	AD	AD	AD .	AD	IA
19	K113	Royal Parikrama Centre near Koramangala 8 th Block	Koramangala Main Valley Primary drain (Behind Akhila Karnataka Animal Rehabilitation Centre)	0	2225	122.64	Sec.	2	5.62	7.86	10.22	12.35	14.75	1.6	2.81	3.93	5.11	6.18	7.37	4.2	1.75	2.46	3.19	3.86	4.61	AD	AD	AD .	AD	IA

Land Use Analysis for Koramangala Main Valley – Existing Hydraulic Flow Conditions

drain	Chai	nage	ıt	;	paved	open L)	sseus	utes	_	Velo	erage city in sec.	in.)	(.ur	Itration	=	Rainfal	I Intensi	ty"i" in i	mm/hour		(Quantity	(Q)= 10 C	.iA m³/so	ec.	muin	E u	Area	requir	red for	r Drain	in m²	Widt	th requ	ired fo	r drair	ı in m
Description about drain	from	to	Sub Catchment	Total Area (Ha.)	Area of bulitup and paved areas (Ha.)	Area of parks and open space, etc. (Ha.)	Weighted Imperviousness (%)	Inlet Time in minutes	Slope of terain	For terain	For Drain	Flow in drain (min.)	Flow in Terain (min.)	Total time of concentration (min.)	Runoff Coeffiecent	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	Existing Ave.width in m	Ave. Depth of drain	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)
K100	0	1500	A1(a)	41.19	35.01	6.18	66.75	11.2	0.02	1.5	1.6	15.63	6.67	33.49	0.513	38.99	54.12	69.69	83.20	101.69	2.29	3.18	4.09	4.88	5.97												
			A1(b)	81.95	69.65	12.30	66.74	11.2	0.01	1.2	1.6	15.63	6.94	33.77	0.513	38.78	53.84	69.34	82.83	101.15	4.53	6.29	8.1	9.67	11.81												
			Total	123.14							1.6										6.82	9.46	12.19	14.56	17.78	3.00	1.60	4.26	5.92	7.62	9.10	11.11	2.66	3.70	4.76	5.69	6.95
K100	1500	2225	A2	217.2	189.6	27.60	68.01	11.02	0.01	1.2	2.42	15.32	7.64	33.98	0.521	38.62	53.63	69.09	82.55	100.75	12.15	16.87	21.73	25.96	31.69												
			A25 (b)	99.77	99.77	0.00	75	10	0.01	1.2	2.42	15.32	9.72	35.05	0.558	37.82	52.58	67.82	81.16	98.77	5.85	8.13	10.48	12.54	15.26												
				316.97																	17.99	24.99	32.21	38.51	46.95												
			Total	440.11							2.42										24.81	34.46	44.4	53.07	64.74	5.66	1.96	10.25	14.24	18.35	21.93	26.75	5.23	7.26	9.36	11.19	13.65
K112	0	715	A25 (a)	81.73	81.73	0	75	10	0.01	1.2	1.83	6.51	6.94	23.46	0.503	49.55	67.98	86.26	101.12	127.92	5.65	7.76	9.84	11.54	14.6												
			Total	81.73							1.83										5.65	7.76	9.84	11.54	14.6	3.92	1.77	3.09	4.24	5.38	6.31	7.98	1.75	2.39	3.04	3.56	4.51
K100	2225	2650	A3	90.4	87.19	3.21	73.05	10.28	0.02	1.5	1.75	25.24	4.44	39.97	0.564	34.62	48.34	62.69	75.53	90.75	4.9	6.85	8.88	10.7	12.85										I		
			A4	123.57	123.57	0.00	75	10	0.01	1.2	1.75	25.24	8.33	43.57	0.586	32.66	45.74	59.53	72.04	85.84	6.57	9.2	11.97	14.49	17.26												
				213.97																	11.47	16.04	20.85	25.18	30.11												
			Total	735.81							1.75										36.28	50.5	65.25	78.25	94.85	7.84	2.39	20.73	28.86	37.29	44.71	54.20	8.67	12.07	15.60	18.71	22.68
K111	0	950	A23(a)	34.76	29.16	5.6	66.14	11.29	0.01	1.2	1.4	11.31	4.86	27.46	0.487	44.57	61.46	78.49	92.76	115.57	2.09	2.89	3.69	4.36	5.43												
			A23(b)	46.68	46.68	0	75	10	0.02	1.2	1.4	11.31	7.64	28.95	0.529	43.01	59.42	76.05	90.12	111.71	2.95	4.07	5.22	6.18	7.66												
			Total	81.44							1.4										5.04	6.96	8.9	10.54	13.09												
K110	0	625	A24(a1)	71.32	14.68	56.64	31.32	16.35	0.01	1.2	1.45	7.18	2.5	26.04	0.339	46.19	63.58	81.03	95.50	119.60	3.1	4.27	5.44	6.41	8.02												
			A24(b)	33.88	30.58	3.3	69.64	10.78	0.01	1.2	1.45	7.18	9.72	27.69	0.499	44.32	61.14	78.11	92.34	114.96	2.08	2.87	3.67	4.34	5.4												
				105.2							1.45										5.18	7.14	9.11	10.74	13.42	1.80	1.40	3.57	4.92	6.28	7.41	9.26	2.55	3.52	4.49	5.29	6.61
			Total	922.45							1.45										10.23	14.1	18.01	21.28	26.52												

about drain	Chai	inage	ut	a.)	i paved	l open a.)	usness	nutes	.c	Average Velocity m/sec		min.)	ntration	nt "C"	Rainfal	I Intensi	ty "i" in ı	nm/hour		c	Quantity	(Q)= 10 C	.iA m³/se	ec.	th in m	ain m	Area	required	for Drain	ı in m²	Widt	th requ	uired fo	or drair	ı in m
Description abou	from	to	Sub Catchment	Total Area (Ha.)	Area of bulitup and paved areas (Ha.)	Area of parks and open space, etc. (Ha.)	Weighted Imperviousness (%)	Inlet Time in minutes	Slope of terain	For terain	Flow in drain (min.)	Flow in Terain (min.)	Total time of concentration (min.)	Runoff Coeffiecent "C"	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	Existing Ave.width in m	Ave. Depth of drain	(For 1 Year)	(For 2 Year) (For 5 Vear)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)
										2.	28									40.36	56.21	72.7	87.28	105.57	11.00	2.40	17.70	24.66 31.	39 38.28	46.30	7.37	10.27	13.29	15.95	19.29
K100	2650	3350	A24(a2)	90	60	30	56.67	12.67	0.01	1.2 2.	28 20.1	12.5	45.27	0.512	31.84	44.63	58.18	70.55	83.75	4.08	5.71	7.45	9.03	10.72											
K109	0	2000	A5 (a)	57.71	57.71	0	75	10	0.02	1.5 1.	43 23.31	3.33	36.64	0.561	36.70	51.10	66.03	79.21	95.97	3.3	4.6	5.94	7.13	8.64											
			A5 (b2)	17.78	15	2.78	66.4	11.25	0.01	1.2 1.	43 23.31	6.94	41.51	0.579	33.75	47.18	61.29	73.99	88.57	0.97	1.35	1.75	2.12	2.53											
			Total	75.49						1.	43									4.27	5.95	7.7	9.24	11.17	3.50	1.64	2.98	4.16 5.3	8 6.46	7.81	1.82	2.54	3.28	3.94	4.76
																				40.36	56.21	72.7	87.28	105.57											
K100	3350	4350	A5 (b1)	181.55	156.55	25	67.43	11.1	0.01	1.2 1.	89 25.13	15.28	51.51	0.577	29.18	41.09	53.85	65.74	77.06	8.49	11.96	15.67	19.13	22.42											
			Total	1269.49						1.	89									48.85	68.17	88.37	106.41	127.99	12.50	2.10	25.84	36.07 46.	75 56.30	67.72	12.31	17.18	22.26	26.81	32.25
K108	0	1925	A22 (a)	119.51	80	39.51	56.82	12.64	0.01	1.2 1.	79 17.92	10.42	40.99	0.496	34.04	47.56	61.75	74.50	89.29	5.61	7.83	10.17	12.27	14.71											
			A22 (b)	69.04	44.31	24.73	55.3	12.87	0.01	1.2 1.	79 17.92	13.89	44.68	0.505	32.12	45.01	58.64	71.06	84.46	3.11	4.36	5.68	6.88	8.18											
				188.55						1.	79									8.72	12.19	15.85	19.15	22.88	3.10	1.26	4.87	6.81 8.8	5 10.70	12.78	3.86	5.41	7.03	8.49	10.15
K100	4350	4700		1458.04					-	- 1.	57 3.72	-	55.23							48.85	68.17	88.37	106.41	127.99	12.50	1.70	31.11	43.42 56.	8 67.78	81.53	18.30	25.54	33.11	39.87	47.96
K107	0	750	A6 (a)	72.02	53	19.02	60.47	12.11	0.02	1.5 1	.5 8.33	7.78	28.22	0.467	43.75	60.39	77.21	91.38	113.55	4.09	5.65	7.22	8.54	10.61											
			A6 (b)	24.6	9.6	15	41.46	14.88	0.01	1.2 1	.5 8.33	11.11	34.32	0.413	38.35	53.28	68.67	82.10	100.10	1.08	1.5	1.94	2.32	2.82											
			Total	96.62						1	.5									5.17	7.15	9.15	10.86	13.44	4.00	1.50	3.45	4.77 6.1	0 7.24	8.96	2.30	3.18	4.07	4.83	5.97
K100	4700	5200	Total	1554.66						2.	24 3.72		58.95							54.02	75.32	97.52	117.27	141.43	20.00	1.95	24.12	33.62 43.	54 52.35	63.14	12.37	17.24	22.33	26.85	32.38
K104	0	1700	A21 (a)	18.86	9.22	9.64	46.89	14.09	0.01	1.2 1	.8 15.74	5.56	35.39	0.437	37.58	52.25	67.43	80.74	98.15	0.86	1.2	1.54	1.85	2.25											
			A21 (b)	13.84	13.84	0	75	10	0.01	1.2 1	.8 15.74	8.33	34.07	0.554	38.54	53.53	68.97	82.42	100.57	0.82	1.14	1.47	1.76	2.14											
			A21 (c)	7.7	3.89	3.81	47.79	13.96	0.02	1.5 1	.8 15.74	11.11	40.81	0.458	34.14	47.69	61.91	74.67	89.54	0.33	0.47	0.61	0.73	0.88											

about drain	Chainage	ut	a.)	d paved	l open a.)	nsness	nutes	.5	Veloc	rage city in sec.	nin.)	min.)	entration	nt "C"	Rainfal	l Intensi	¦y"i" in ı	nm/hour		c	Quantity	(Q)= 10 C	.iA m³/s	ec.	th in m	ain m	Area	requir	red for	Drain	in m²	Widtl	n required f	or drain in m
Description abou	from to	Sub Catchment	Total Area (Ha.)	Area of bulitup and paved areas (Ha.)	Area of parks and open space, etc. (Ha.)	Weighted Imperviousness (%)	Inlet Time in minutes	Slope of terain	For terain	For Drain	Flow in drain (min.)	Flow in Terain (min.)	Total time of concentration (min.)	Runoff Coeffiecent "C"	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	Existing Ave.width in m	Ave. Depth of drain	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year) (For 5 Year)	(For 10 Year) (For 20 Year)
		A21 (d)	25.71	25.71	0	75	10	0.01	1.2	1.8	15.74	15.28	41.02	0.579	34.02	47.54	61.72	74.47	89.24	1.41	1.97	2.55	3.08	3.69										
		A21 (e)	46	46	0	75	10	0.01	1.2	1.8	15.74	16.67	42.41	0.583	33.27	46.54	60.50	73.12	87.35	2.48	3.46	4.5	5.44	6.5										
		Total	112.11							1.8										5.9	8.23	10.68	12.86	15.46	3.00	2.00	3.28	4.57	5.93	7.14	8.59	1.64	2.29 2.97	3.57 4.29
																				54.02	75.32	97.52	117.27	141.43										
K100	5200 6600	A7	179.95	119.61	60.34	56.56	12.68	0.01	1.2	1.89	38.58	9.03	60.29	0.550	26.25	37.15	49.01	60.31	69.63	7.22	10.21	13.47	16.58	19.14										
		A20 (a)	44.42	17.9	26.52	42.16	14.78	0.01	1.2	1.89	38.58	9.03	62.38	0.491	25.66	36.35	48.01	59.19	68.12	1.55	2.2	2.91	3.58	4.12										
		A19 (a)	72.44	40.3	32.14	50.6	13.55	0.02	1.5	1.89	38.58	11.11	63.24	0.525	25.42	36.04	47.62	58.75	67.52	2.68	3.8	5.03	6.2	7.13										
		Total	296.81																	11.45	16.22	21.41	26.36	30.39										
		Total	1963.58							1.89										65.47	91.54	118.93	143.63	171.83	21.00	1.76	34.64	48.43	62.92	76.00	90.91	19.68	27.52 35.75	43.18 51.66
K103	0 3400	A8 (a)	162.45	116.43	46.02	59.42	12.27	0.02	1.5	1.99	28.48	6.67	47.41	0.531	30.86	43.33	56.59	68.79	81.30	7.4	10.39	13.57	16.49	19.49										
		A 8(b)	189.46	176.26	13.2	71.17	10.56	0.01	1.2	1.99	28.48	13.89	52.92	0.596	28.66	40.39	52.99	64.77	75.73	8.99	12.67	16.62	20.32	23.76										
			351.91							1.99										16.39	23.06	30.19	36.81	43.25	11.00	1.27	8.24	11.59	15.17	18.50	21.73	6.48	9.12 11.95	14.56 17.11
																				65.47	91.54	118.93	143.63	171.83										
K100	6600 7050	A9	88.33	88.33	0	75	10	0.01	1.2	2.17	33.79	25	68.79	0.631	24.02	34.15	45.28	56.11	63.96	3.72	5.28	7.01	8.68	9.9										
		A 18 (b)	59.98	59.98	0	75	10	0.01	1.2	2.17	33.79	26.39	70.18	0.631	23.70	33.71	44.74	55.50	63.14	2.49	3.54	4.7	5.83	6.64										
		Total	148.31																	6.21	8.83	11.71	14.52	16.53										
		Total	2463.8							2.17										71.68	100.36	130.64	158.15	188.36	15.00	2.50	33.03	46.25	60.20	72.88	86.80	13.21	18.50 24.08	29.15 34.72
K100	7050 8400	A10	142.87	40.74	102.13	35.68	15.72	0.01	1.2	2	47.92	13.89	77.52	0.461	22.17	31.63	42.16	52.56	59.22	4.05	5.78	7.71	9.61	10.83										

about drain	Chai	nage	t	a.)	paved	open a.)	rsness	utes	c	Aver Veloc m/s		(.uir	nin.)	ntration	rt "C"	Rainfal	I Intensi	ty "i" in	mm/hour		c	Quantity	(Q)= 10 C	.iA m³/s	ec.	h in B	E E	Area	required	for Drai	n in m²	Widt	th requ	uired fo	or drai	n in m
Description about	from	to	Sub Catchment	Total Area (Ha.)	Area of bulitup and paved areas (Ha.)	Area of parks and open space, etc. (Ha.)	Weighted Imperviousness (%)	Inlet Time in minutes	Slope of terain	For terain	For Drain	Flow in drain (min.)	Flow in Terain (min.)	Total time of concentration (min.)	Runoff Coeffiecent	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	Existing Ave.width in m	Ave. Depth of drain	(For 1 Year)	(For 2 Year) (For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)
			A18 (a)	41	41	0	75	10	0.01	1.2	2 47	7.92	20.83	78.75	0.631	21.93	31.32	41.76	52.11	58.63	1.58	2.25	3	3.74	4.21											
			Total	183.87																	5.63	8.03	10.71	13.35	15.04											
			Total	2647.67							2										77.31	108.4	141.35	171.5	203.4	12.00	2.10	38.65	54.20 70.	85.75	5 101.70	0 18.41	25.81	33.65	40.83	48.43
K101	0	350	A17 (b)	22.33	22.33	0	75	10	0.01	1.2	2.5 2	.47	4.17	16.63	0.462	62.45	84.70	105.97	122.05	159.63	1.79	2.43	3.04	3.5	4.58											
																					1.79	2.43	3.04	3.5	4.58											
K101	350	2000	A17 (a)	60	60	0	75	10	0.02	1.5	2.14 12	2.85	6.67	29.52	0.534	42.45	58.68	75.17	89.16	110.32	3.78	5.22	6.69	7.94	9.82											
			A17 (c)	50	58	0	75	10	0.01	1.2	2.14 12	2.66	11.11	33.77	0.550	38.78	53.84	69.35	82.83	101.16	2.96	4.12	5.3	6.33	7.73											
			Total	132.33							2.14										6.74	9.34	11.99	14.27	17.55											
											2.14										8.53	11.77	15.03	17.77	22.13	3.32	1.68	3.99	5.50 7.0	2 8.30	10.34	2.37	3.27	4.18	4.94	6.16
K100	8400	9100	A11	78.8	38.8	40	47.08	14.06	0.01	1.2	1.7 56	6.37	9.72	80.16	0.51	21.67	30.96	41.32	51.60	57.96	2.43	3.47	4.63	5.78	6.49											
			A16	63.84	48	15.84	61.35	11.98	0.01	1.2	1.7 56	6.37	13.19	81.55	0.571	21.42	30.62	40.90	51.12	57.32	2.17	3.1	4.14	5.18	5.81											
			Total	142.64							1.7										4.6	6.57	8.77	10.96	12.3											
			Total	2922.64							1.7										81.91	114.97	150.12	182.46	215.7	11.50	1.77	48.18	67.63 88.	0 107.3	3 126.88	3 27.22	38.21	49.89	60.64	71.68
K100	9100	10900	A12	156.84	46.84	110	36.43	15.61	0.03	1.5	1.8 60	0.65	7.78	84.04	0.47	20.99	30.04	40.17	50.29	56.22	4.25	6.09	8.14	10.19	11.39											
			A14	11.32	11.32	0	75	10	0.01	1.2	1.8 60	0.65	16.67	87.31	0.631	20.46	29.32	39.26	49.24	54.85	0.41	0.58	0.78	0.98	1.09											
			A15	60.24	25	35.24	42.83	14.68	0.01	1.2	1.8 60	0.65	13.89	89.22	0.49	20.17	28.91	38.75	48.67	54.1	1.66	2.37	3.18	3.99	4.44											
			Total	228.4							1.8										6.31	9.04	12.1	15.16	16.92											
			Total	3151.04							1.8										88.22	124.01	162.21	197.62	232.62	13.00	2.02	49.01	68.89 90.	2 109.7	9 129.23	3 24.26	34.11	44.61	54.35	63.98
K113	0	2225	A	66.8	38.8	28	51.95	13.35	0.01	1.2	2 18	3.54	9.72	41.62	0.48	33.69	47.10	61.19	73.88	88.41	2.99	4.18	5.43	6.56	7.85											
			A	55.84	40	15.84	59.4	12.27	0.01	1.2	2 18	3.54	13.19	44.01	0.522	32.45	45.45	59.18	71.65	85.29	2.63	3.68	4.79	5.8	6.9											
			Total	122.64							2										5.62	7.86	10.22	12.35	14.75	4.20	1.60	2.81	3.93 5.1	1 6.18	7.37	1.75	2.46	3.19	3.86	4.61

						<	-	>						. 드			-			. <u> </u>										
ö	otion	Drain	Reach	Chain	age (m)	rea	ē	elocity ec		Dischar	ges (Q in	m³/sec)		Av.Drain D in m.	Are	ea requir	red for d	rain (A ir	n m²)	Av. Drain V(m.)		Require	ed Drain	Width (m	1)		Re	mark	S	
SI.No.	Description	From	То	From	То	Catchment A (Ha.)	Type	Average Velo m/sec	1year	2year	5year	10year	20year	Proposing Depth E	1year	2year	5year	10year	20year	Proposing Av. Width W(r	1year	2year	5year	10year	20year	1year	2year	5year	10year	20year
1	K100	Upparpete	Avenue Road	0	1500	123.24	Pri.	2.4	6.82	9.46	12.19	14.56	17.78	1.8	2.84	3.94	5.08	6.07	7.41	3.5	1.58	2.19	2.82	3.37	4.12	AD	AD	AD	AD	IA
2	K100	Avenue Road	1 st Main J.C. Road	1500	2225	440.11	Pri.	3.3	24.81	34.46	44.4	53.07	64.74	2.2	7.52	10.44	13.46	16.08	19.62	8.5	3.42	4.75	6.12	7.31	8.92	AD	AD	AD	AD	IA
3	K100	1 st Main J.C. Road	Lalbagh Road	2225	2650	735.81	Pri.	3.2	36.28	50.5	65.25	78.25	94.85	2.4	11.34	15.78	20.39	24.45	29.64	10	4.72	6.58	8.5	10.19	12.35	AD	AD	AD	IA	IA
4	K100	Lalbagh Road	K.H. Road	2650	3350	1012.45	Pri.	3.7	40.36	56.21	72.7	87.28	105.57	2.4	10.91	15.19	19.65	23.59	28.53	11	4.54	6.33	8.19	9.83	11.89	AD	AD	AD	AD	IA
5	K100	K.H. Road	9 th Cross Wilson Garden Road	3350	4350	1269.49	Pri.	3	48.85	68.17	88.37	106.41	127.99	2.4	16.28	22.72	29.46	35.47	42.66	12.5	6.78	9.47	12.27	14.78	17.78	AD	AD	AD	IA	IA
6	K100	9 th Cross Wilson Garden Road	Vinayaka Nagar	4350	4700	1458.04	Pri.	2.7	48.85	68.17	88.37	106.41	127.99	2.1	18.09	25.25	32.73	39.41	47.41	12.5	8.61	12.02	15.58	18.77	22.57	AD	AD	IA	IA	IA
7	K100	Vinayaka Nagar	Hosur Road	4700	5200	1554.66	Pri.	3.93	54.02	75.32	97.52	117.27	141.43	2.4	13.75	19.16	24.81	29.84	35.99	20	5.73	7.99	10.34	12.43	14.99	AD	AD	AD	AD	AD
8	K100	Hosur Road	Rose Garden	5200	6600	1963.58	Pri.	3	65.47	91.54	118.93	143.63	171.83	3	21.82	30.51	39.64	47.88	57.28	22.5	7.27	10.17	13.21	15.96	19.09	AD	AD	AD	AD	AD
9	K100	Rose Garden	Vivek Nagar Bridge	6600	7050	2463.8	Pri.	3.8	71.68	100.36	130.64	158.15	188.36	3	18.86	26.41	34.38	41.62	49.57	24	6.29	8.8	11.46	13.87	16.52	AD	AD	AD	AD	AD
10	K100	Vivek Nagar Bridge	Ejipura Church Road Bridge	7050	8400	2647.67	Pri.	3.3	77.31	108.4	141.35	171.5	203.4	3	23.43	32.85	42.83	51.97	61.64	16	7.81	10.95	14.28	17.32	20.55	AD	AD	AD	IA	IA
11	K100	Ejipura Church Road Bridge	1 st Cross Koramangala / S.T. Bed	8400	9100	2922.64	Pri.	3.75	81.91	114.97	150.12	182.46	215.7	3	21.84	30.66	40.03	48.66	57.52	18	7.28	10.22	13.34	16.22	19.17	AD	AD	AD	AD	IA
12	K100	1 st Cross Koramangala / S.T. Bed	Bellandur Tank	9100	10900	3151.06	Pri.	3.7	88.22	124.01	162.22	197.62	232.62	2.8	23.84	33.52	43.84	53.41	62.87	14	8.52	11.97	15.66	19.08	22.45	AD	AD	IA	IA	IA
13	K101	Hosur Road	Koramangala Slum	0	2000	132.33	Sec.	3.75	8.53	11.77	15.03	17.77	22.13	1.8	2.28	3.14	4.01	4.74	5.9	3.8	1.26	1.74	2.23	2.63	3.28	AD	AD	AD	AD	AD
14	K103	M.G. Road	Neelasandra	0	3375	351.91	Sec.	3.85	16.43	23.12	30.26	36.89	43.36	1.8	4.27	6	7.86	9.58	11.26	11	2.37	3.34	4.37	5.32	6.26	AD	AD	AD	AD	AD
15	K108	Jayanagar 1 st Block	Wilson Garden	0	1925	188.55	Sec.	1.79	8.72	12.19	15.85	19.15	22.88	1.26	4.87	6.81	8.85	10.7	12.78	3.1	3.86	5.41	7.03	8.49	10.15	IA	IA	IA	IA	IA
16	K109	Kanteerava Stadium	R.R.M.Roy Extn.	0	1975	75.49	Sec.	3	4.29	5.98	7.73	9.28	11.23	1.8	1.43	1.99	2.58	3.09	3.74	3.5	0.79	1.11	1.43	1.72	2.08	AD	AD	AD	AD	AD
17	K110	Hosur Road	Sudhama Nagar	0	625	105.2	Sec.	1.45	9.69	13.43	17.26	20.55	25.24	1.6	6.68	9.26	11.9	14.17	17.41	6	4.18	5.79	7.44	8.86	10.88	AD	AD	IA	IA	IA

 Table
 Showing Adequacy Analysis Results for Koramangala Main Valley - For Improved Hydraulic Flow Conditions

No.	otion	Drain	Reach	Chaina	age (m)	t Area A .)	e	elocity V ec		Dischar	ges (Q ir	ı m³/sec)		Av.Drain) in m.	Are	a requir	ed for di	rain (A ir	1 m²)	Av. Drain V(m.)	F	Require	d Drain	Width (m)		Re	emark	S
SI.N	Descri	From	То	From	То	Catchment (Ha.	Typ	Average V m/se	1 year	2year	5year	1 Oyear	20year	Proposing Depth D	1 year	2year	5year	10year	20year	Proposing / Width W	1 year	2year	5year	10year	20year	1 year	2year	5year	10year 20year
18	K112	Paravathipura	Kumbaragundi	0	715	81.73	Sec.	2.4	5.65	7.76	9.84	11.54	14.6	1.9	2.36	3.23	4.1	4.81	6.08	3.92	1.24	1.7	2.16	2.53	3.2	AD	AD	AD	AD AD

Land Use Analys	sis for Koramanga	la Main Vallev	Storm Water Drain	Clean Condition

drain	Chai	nage	ıt	î	paved	open 1.)	ssausr	utes	5	Veloc	rage city in sec.	in.)	nin.)	ntration	t "C"	Rainfa	II Intensi	ty "i" in	mm/hour		c	Quantity (Q)= 10 C.	iA m³/s	ec.	n in m	u.	Area	requi	ired for	r Drain	in m²	Widt	h required	d for dra	in in m
Description about drain	from	to	Sub Catchment	Total Area (Ha.)	Area of bulitup and paved areas (Ha.)	Area of parks and open space, etc. (Ha.)	Weighted Imperviousness (%)	Inlet Time in minutes	Slope of terain	For terain	For Drain	Flow in drain (min.)	Flow in Terain (min.)	Total time of concentration (min.)	Runoff Coeffiecent	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	Existing Ave.width in m	Ave. Depth of drain	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year) (For 5 Year)	(For 10 Year)	(For 20 Year)
K100	0	1500	A1(a)	41.19	35.01	6.18	66.75	11.2	0.02	1.5	1.6	15.63	6.67	33.49	0.513	38.99	54.12	69.69	83.20	101.69	2.29	3.18	4.09	4.88	5.97											
			A1(b)	81.95	69.65	12.30	66.74	11.2	0.01	1.2	1.6	15.63	6.94	33.77	0.513	38.78	53.84	69.34	82.83	101.15	4.53	6.29	8.1	9.67	11.81											
			Total	123.14							1.6										6.82	9.46	12.19	14.56	17.78	3.00	1.60	4.26	5.92	7.62	9.10	11.11	2.66	3.70 4.7	'6 5.6§	9 6.95
K100	1500	2225	A2	217.2	189.6	27.60	68.01	11.02	0.01	1.2	2.42	15.32	7.64	33.98	0.521	38.62	53.63	69.09	82.55	100.75	12.15	16.87	21.73	25.96	31.69											
			A25 (b)	99.77	99.77	0.00	75	10	0.01	1.2	2.42	15.32	9.72	35.05	0.558	37.82	52.58	67.82	81.16	98.77	5.85	8.13	10.48	12.54	15.26											
				316.97																	17.99	24.99	32.21	38.51	46.95											
			Total	440.11							2.42										24.81	34.46	44.4	53.07	64.74	5.66	1.96	10.25	14.24	18.35	21.93	26.75	5.23	7.26 9.3	6 11.1	9 13.65
K112	0	715	A25 (a)	81.73	81.73	0	75	10	0.01	1.2	1.83	6.51	6.94	23.46	0.503	49.55	67.98	86.26	101.12	127.92	5.65	7.76	9.84	11.54	14.6											
			Total	81.73							1.83										5.65	7.76	9.84	11.54	14.6	3.92	1.77	3.09	4.24	5.38	6.31	7.98	1.75	2.39 3.0	14 3.56	i 4.51
K100	2225	2650	A3	90.4	87.19	3.21	73.05	10.28	0.02	1.5	1.75	25.24	4.44	39.97	0.564	34.62	48.34	62.69	75.53	90.75	4.9	6.85	8.88	10.7	12.85											
			A4	123.57	123.57	0.00	75	10	0.01	1.2	1.75	25.24	8.33	43.57	0.586	32.66	45.74	59.53	72.04	85.84	6.57	9.2	11.97	14.49	17.26											
				213.97																	11.47	16.04	20.85	25.18	30.11											
			Total	735.81							1.75										36.28	50.5	65.25	78.25	94.85	7.84	2.39	20.73	28.86	37.29	44.71	54.20	8.67	12.07 15.	60 18.7	1 22.68
K110	0	1000	A23(a)	34.76	29.16	5.6	66.14	11.29	0.01	1.2	1.4	11.9	4.86	28.05	0.492	43.93	60.62	77.49	91.68	113.99	2.09	2.88	3.68	4.35	5.41											
			A23(b)	46.68	46.68	0	75	10	0.02	1.2	1.4	11.9	7.64	29.54	0.534	42.43	58.65	75.13	89.12	110.25	2.94	4.06	5.2	6.17	7.64											
			Total	81.44							1.4										5.02	6.94	8.88	10.53	13.05	4.00	1.50	3.59	4.96	6.35	7.52	9.32	2.39	3.31 4.2	23 5.01	6.21
K110	1000	2375	A24(a1)	71.32	14.68	56.64	31.32	16.35	0.01	1.2	1.45	15.8	2.5	34.66	0.371	38.10	52.95	68.27	81.66	99.48	2.8	3.89	5.02	6.01	7.32											
			A24(b)	33.88	30.58	3.3	69.64	10.78	0.01	1.2	1.45	15.8	9.72	36.31	0.536	36.93	51.40	66.40	79.61	96.54	1.86	2.59	3.35	4.02	4.87											
				105.2																	4.67	6.49	8.37	10.02	12.19											
			Total	922.45							1.45										9.69	13.43	17.26	20.55	25.24	6.00	1.60	6.68	9.26	11.90	14.17	17.41	4.18	5.79 7.4	4 8.80	; 10.88

about drain	Chai	nage	IJ	a.)	paved	open a.)	nsness	iutes	.5		rage city in sec.	nin.)	min.)	ntration	nt "C"	Rainfal	I Intensi	ty "i" in I	mm/hour		a	Quantity (Q)= 10 C.	iA m³∕s	ec.	th in m	n m	Area	a requ	ired fo	or Drain	in m²	Widt	h requ	uired fo	r drain	ı in m
Description abou	from	to	Sub Catchment	Total Area (Ha.)	Area of bulitup and paved areas (Ha.)	Area of parks and open space, etc. (Ha.)	Weighted Imperviousness (%)	Inlet Time in minutes	Slope of terain	For terain	For Drain	Flow in drain (min.)	Flow in Terain (min.)	Total time of concentration (min.)	Runoff Coeffiecent	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	Existing Ave.width in m	Ave. Depth of drain	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)
											2.28										40.36	56.21	72.7	87.28	105.57	11.00	2.40	17.70	24.66	31.89	38.28	46.30	7.37	10.27	13.29	15.95	19.29
K100	2650	3350	A24(a2)	90	60	30	56.67	12.67	0.01	1.2	2.28	20.1	12.5	45.27	0.512	31.84	44.63	58.18	70.55	83.75	4.08	5.71	7.45	9.03	10.72												
K109	0	1975	A5 (a)	57.71	57.71	0	75	10	0.02	1.5	1.43	23.02	3.33	36.35	0.561	36.90	51.36	66.35	79.55	96.46	3.32	4.62	5.97	7.16	8.68												
			A5 (b2)	17.78	15	2.78	66.4	11.25	0.01	1.2	1.43	23.02	6.94	41.21	0.579	33.91	47.39	61.55	74.27	88.97	0.97	1.36	1.76	2.12	2.55												
			Total	75.49							1.43										4.29	5.98	7.73	9.28	11.23	3.50	1.64	3.00	4.18	5.41	6.49	7.85	1.83	2.55	3.30	3.96	4.79
																					40.36	56.21	72.7	87.28	105.57												
K100	3350	4350	A5 (b1)	181.55	156.55	25	67.43	11.1	0.01	1.2	1.89	25.13	15.28	51.51	0.577	29.18	41.09	53.85	65.74	77.06	8.49	11.96	15.67	19.13	22.42												
			Total	1269.49							1.89										48.85	68.17	88.37	106.41	127.99	12.50	2.10	25.84	36.07	46.75	56.30	67.72	12.31	17.18	22.26	26.81	32.25
K108	0	1925	A22 (a)	119.51	80	39.51	56.82	12.64	0.01	1.2	1.79	17.92	10.42	40.99	0.496	34.04	47.56	61.75	74.50	89.29	5.61	7.83	10.17	12.27	14.71												
			A22 (b)	69.04	44.31	24.73	55.3	12.87	0.01	1.2	1.79	17.92	13.89	44.68	0.505	32.12	45.01	58.64	71.06	84.46	3.11	4.36	5.68	6.88	8.18												
				188.55							1.79										8.72	12.19	15.85	19.15	22.88	3.10	1.26	4.87	6.81	8.85	10.70	12.78	3.86	5.41	7.03	8.49	10.15
K100	4350	4700		1458.04					-	-	1.57	3.72	-	55.23							48.85	68.17	88.37	106.41	127.99	12.50	1.70	31.11	43.42	56.28	67.78	81.53	18.30	25.54	33.11	39.87	47.96
K107	0	750	A6 (a)	72.02	53	19.02	60.47	12.11	0.02	1.5	1.5	8.33	7.78	28.22	0.467	43.75	60.39	77.21	91.38	113.55	4.09	5.65	7.22	8.54	10.61												
			A6 (b)	24.6	9.6	15	41.46	14.88	0.01	1.2	1.5	8.33	11.11	34.32	0.413	38.35	53.28	68.67	82.10	100.10	1.08	1.5	1.94	2.32	2.82												
			Total	96.62							1.5										5.17	7.15	9.15	10.86	13.44	4.00	1.50	3.45	4.77	6.10	7.24	8.96	2.30	3.18	4.07	4.83	5.97
K100	4700	5200	Total	1554.66							2.24	3.72		58.95							54.02	75.32	97.52	117.27	141.43	20.00	1.95	24.12	33.62	43.54	52.35	63.14	12.37	17.24	22.33	26.85	32.38
																														<u> </u>							
K104	0	1400	A21 (a)	18.86	9.22	9.64	46.89	14.09	0.01	1.2	1.8	2.31	5.56	21.96	0.375	51.80	70.91	89.73	104.83	133.47	1.02	1.39	1.76	2.06	2.62					<u> </u>							
			A21 (b)	13.84	13.84	0	75	10	0.01	1.2	1.8	4.63	8.33	22.96	0.497	50.27	68.91	87.36	102.30	129.68	0.96	1.32	1.67	1.96	2.48					<u> </u>							
			A21 (c)	7.7	3.89	3.81	47.79	13.96	0.02	1.5	1.8	3.24	11.11	28.31	0.414	43.66	60.27	77.07	91.22	113.32	0.39	0.53	0.68	0.81	1												

drain	Chai	nage	ŧ	a.)	paved	open a.)	sseusr	utes	5		rage ty in ec.	(.uir	nin.)	ntration	t "C"	Rainfal	I Intensi	ty"i" in I	mm/hour		G	Quantity (Q)= 10 C.	iA m³∕s	ec.	h in m	E	Area	requi	ired for	r Drain	in m²	Widtl	h requi	ired for	r drain	in m
Description about drain	from	to	Sub Catchment	Total Area (Ha.)	Area of bulitup and paved areas (Ha.)	Area of parks and open space, etc. (Ha.)	Weighted Imperviousness (%)	Inlet Time in minutes	Slope of terain	For terain	For Drain	Flow in drain (min.)	Flow in Terain (min.)	Total time of concentration (min.)	Runoff Coeffiecent	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	Existing Ave.width in m	Ave. Depth of drain	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)
			A21 (d)	25.71	25.71	0	75	10	0.01	1.2	1.8	8.8	15.28	34.07	0.554	38.54	53.53	68.97	82.42	100.57	1.53	2.12	2.73	3.26	3.98												
			A21 (e)	46	46	0	75	10	0.01	1.2	1.8	6.94	19.44	36.39	0.561	36.87	51.33	66.31	79.51	96.40	2.64	3.68	4.76	5.7	6.91												
			Total	112.11							1.8										6.54	9.04	11.6	13.79	17	3.00	2.00	3.63	5.02	6.45	7.66	9.44	1.82	2.51	3.22	3.83	4.72
																					54.02	75.32	97.52	117.27	141.43												
K100	5200	6600	A7	179.95	119.61	60.34	56.56	12.68	0.01	1.2	1.89	38.58	9.03	60.29	0.550	26.25	37.15	49.01	60.31	69.63	7.22	10.21	13.47	16.58	19.14												
			A20 (a)	44.42	17.9	26.52	42.16	14.78	0.01	1.2	1.89	38.58	9.03	62.38	0.491	25.66	36.35	48.01	59.19	68.12	1.55	2.2	2.91	3.58	4.12												
			A19 (a)	72.44	40.3	32.14	50.6	13.55	0.02	1.5	1.89	38.58	11.11	63.24	0.525	25.42	36.04	47.62	58.75	67.52	2.68	3.8	5.03	6.2	7.13												
			Total	296.81																	11.45	16.22	21.41	26.36	30.39												
			Total	1963.58							1.89										65.47	91.54	118.93	143.63	171.83	21.00	1.76	34.64	48.43	62.92	76.00	90.91	19.68	27.52	35.75	43.18	51.66
K103	0	3375	A8 (a)	162.45	116.43	46.02	59.42	12.27	0.02	1.5	1.99	28.27	6.67	47.2	0.531	30.95	43.46	56.74	68.96	81.53	7.42	10.42	13.6	16.53	19.54												
			A 8(b)	189.46	176.26	13.2	71.17	10.56	0.01	1.2	1.99	28.27	13.89	52.71	0.596	28.74	40.49	53.11	64.91	75.93	9.02	12.7	16.66	20.37	23.82												
				351.91							1.99										16.43	23.12	30.26	36.89	43.36	11.00	1.27	8.26	11.62	15.21	18.54	21.79	6.50	9.15	11.97	14.60	17.16
																					65.47	91.54	118.93	143.63	171.83												
K100	6600	7050	A9	88.33	88.33	0	75	10	0.01	1.2	2.17	33.79	25	68.79	0.631	24.02	34.15	45.28	56.11	63.96	3.72	5.28	7.01	8.68	9.9												
			A 18 (b)	59.98	59.98	0	75	10	0.01	1.2	2.17	33.79	26.39	70.18	0.631	23.70	33.71	44.74	55.50	63.14	2.49	3.54	4.7	5.83	6.64												
			Total	148.31																	6.21	8.83	11.71	14.52	16.53												
			Total	2463.8							2.17										71.68	100.36	130.64	158.15	188.36	15.00	2.50	33.03	46.25	60.20	72.88	86.80	13.21	18.50	24.08 2	29.15	34.72
K100	7050	8400	A10	142.87	40.74	102.13	35.68	15.72	0.01	1.2	2	47.92	13.89	77.52	0.461	22.17	31.63	42.16	52.56	59.22	4.05	5.78	7.71	9.61	10.83												
			A18 (a)	41	41	0	75	10	0.01	1.2	2	47.92	20.83	78.75	0.631	21.93	31.32	41.76	52.11	58.63	1.58	2.25	3	3.74	4.21												
			Total	183.87																	5.63	8.03	10.71	13.35	15.04												
			Total	2647.67							2										77.31	108.4	141.35	171.5	203.4	12.00	2.10	38.65	54.20	70.67	85.75	101.70	18.41	25.81	33.65	40.83	48.43

about drain	Chainage		nt	a.)	l paved	open a.)	usness	nutes	.5	Velo	erage city in sec.	(min.)	min.)	ntration	nt "C"	Rainfa	ll Intensi	ty"i" in I	mm/hour		c	Quantity ((Q)= 10 C.	iA m³∕s	ec.	th in m	ain m	Area	requi	red for	Drain	in m²	Width	h requi	ired fo	or drain	in m						
Description abou	from	þ	Sub Catchment	Total Area (Ha.)	Area of bulitup and paved areas (Ha.)	Area of parks and space, etc. (F	Area of parks and open space, etc. (Ha.)	Area of parks and space, etc. (H	Weighted Imperviousness (%)	Inlet Time in minutes	Slope of terain	For terain	For Drain	Flow in drain (r	Flow in Terain (min.)	Total time of concentration (min.)	Runoff Coeffiecent	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	Existing Ave.width in m	Ave. Depth of drain	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)				
K101	0	350	A17 (b)	22.33	22.33	0	75	10	0.01	1.2	2.5	2.47	4.17	16.63	0.462	62.45	84.70	105.97	122.05	159.63	1.79	2.43	3.04	3.5	4.58																		
																					1.79	2.43	3.04	3.5	4.58																		
K101	350	2000	A17 (a)	60	60	0	75	10	0.02	1.5	2.14	12.85	6.67	29.52	0.534	42.45	58.68	75.17	89.16	110.32	3.78	5.22	6.69	7.94	9.82																		
			A17 (c)	50	58	0	75	10	0.01	1.2	2.14	12.66	11.11	33.77	0.550	38.78	53.84	69.35	82.83	101.16	2.96	4.12	5.3	6.33	7.73																		
			Total	132.33							2.14										6.74	9.34	11.99	14.27	17.55																		
											2.14										8.53	11.77	15.03	17.77	22.13	3.32	1.68	3.99	5.50	7.02	8.30	10.34	2.37	3.27	4.18	4.94	6.16						
K100	8400	9100	A11	78.8	38.8	40	47.08	14.06	0.01	1.2	1.7	56.37	9.72	80.16	0.51	21.67	30.96	41.32	51.60	57.96	2.43	3.47	4.63	5.78	6.49																		
			A16	63.84	48	15.84	61.35	11.98	0.01	1.2	1.7	56.37	13.19	81.55	0.571	21.42	30.62	40.90	51.12	57.32	2.17	3.1	4.14	5.18	5.81																		
			Total	142.64							1.7										4.6	6.57	8.77	10.96	12.3																		
			Total	2922.64							1.7										81.91	114.97	150.12	182.46	215.7	11.50	1.77	48.18	67.63	88.30	107.33	126.88	27.22	38.21	49.89	60.64	71.68						
K100	9100	10900	A12	156.84	46.84	110	36.43	15.61	0.03	1.5	1.8	60.65	7.78	84.04	0.47	20.99	30.04	40.17	50.29	56.22	4.25	6.09	8.14	10.19	11.39																		
			A14	11.34	11.34	0	75	10	0.01	1.2	1.8	60.65	16.67	87.31	0.631	20.46	29.32	39.26	49.24	54.85	0.41	0.58	0.78	0.98	1.09																		
			A15	60.24	25	35.24	42.83	14.68	0.01	1.2	1.8	60.65	13.89	89.22	0.49	20.17	28.91	38.75	48.67	54.1	1.66	2.37	3.18	3.99	4.44																		
			Total	228.42							1.8										6.31	9.04	12.1	15.16	16.92																		
			Total	3151.06							1.8										88.22	124.01	162.22	197.62	232.62	13.00	2.02	49.01	68.89	90.12	109.79 ⁻	129.23	24.26	34.11	44.61	54.35	63.98						

SI.No.	Description	Drain I	Reach	Chaina	age (m)	ent Area Ha.)	Type	Average Velocity V m/sec		-	rges (Q i	n m³/sec	c)	Av.Drain D in m.	Area	a require	ed for dr	ain (A ii	n m²)	g Av. Drain (W in m.)	F	lequired	d Drain	Width (r	n)		Re	emarł	٢S	
SI.	Desci	From	То	From	То	Catchment A A (Ha.)	Τy	Average V m	1 year	2year	5year	10year	20year	Existing Depth	1year	2year	5year	10year	20year	Existing , Width (/	1year	2year	5year	10year	20year	1year	2year	5year	10year	20year
1	K200	Nimhans Hospital	Mundkar Fire service college	0	1075	49.43	Pri.	3.42	2.59	3.58	4.58	5.42	6.72	1.5	0.76	1.05	1.34	1.59	1.97	3.5	0.5	0.7	0.89	1.06	1.31	AD	AD	AD	AD	AD
2	K200	Mundkar Fire service college	Tank Bund Road, Near Bismillahanagar	1075	1850	87.42	Pri.	2.8	16.8	23.12	29.44	34.67	43.48	1.51	6	8.26	10.51	12.38	15.53	4.05	3.97	5.47	6.96	8.2	10.28	AD	IA	IA	IA	IA
3	K200	Tank Bund Road, Near Bismillahanagar	Lakshmi theater, near Bismillahanagar	1850	2250	348.68	Pri.	2.4	18.07	24.88	31.73	37.43	46.8	1.61	7.53	10.37	13.22	15.59	19.5	3.77	4.68	6.44	8.21	9.69	12.11	IA	IA	IA	IA	IA
4	K200	Lakshmi theater, near Bismillahanagar	Tavarekare Main Road	2250	2500	489.27	Pri.	2.21	19.97	27.55	35.2	41.62	51.8	1.87	9.04	12.47	15.93	18.83	23.44	6.24	4.83	6.67	8.52	10.07	12.54	AD	IA	IA	IA	IA
5	K200	Tavarekare Main Road	CSB Jr., Near Hosur Road	2500	4350	758.01	Pri.	1.65	25.87	35.83	46.02	54.8	67.34	2.03	15.68	21.72	27.89	33.21	40.81	8.28	7.72	10.7	13.74	16.36	20.1	AD	IA	IA	IA	IA
6	K200	CSB Jr., Near Hosur Road	HSRlayout Sector –VII, 5 th Main Road	4350	5450	945.67	Pri.	1.82	31.52	43.82	56.54	67.71	82.31	2.14	17.32	24.07	31.06	37.2	45.22	12.37	8.09	11.25	14.52	17.38	21.13	AD	AD	IA	IA	IA
7	K200	HSRlayout Sector –VII, 5th Main Road	HSRlayout Sector –VII, 9 th Main Road	5450	5800	1143.74	Pri.	1.3	33.61	46.78	60.46	72.54	87.87	1.76	25.85	35.99	46.51	55.8	67.59	14	14.69	20.45	26.42	31.7	38.4	IA	IA	IA	IA	IA
8	K200	HSRlayout Sector –VII, 9th Main Road	HSRlayout Sector –VII, 14 th Main Road (Agara Tank)	5800	6075	1208.76	Pri.	1.76	37.26	51.83	66.93	80.23	97.36	1.96	21.17	29.45	38.03	45.58	55.32	14	10.8	15.03	19.4	23.26	28.22	AD	IA	IA	IA	IA
9	K200	HSRlayout Sector –VII, 14th Main Road (Agara Tank)	Bellandur Tank	6075	7625	1763.86	Pri.	1.8	49.84	69.78	90.85	110.05	130.96	2	27.69	38.77	50.47	61.14	72.76	20	13.84	19.38	25.24	30.57	36.38	AD	AD	IA	IA	IA
10	K201	Vanganahalli	Near Agara Tank	0	1350	137.93	Sec.	1.68	6.83	9.53	12.35	14.87	17.89	1.62	4.06	5.67	7.35	8.85	10.65	3.66	2.51	3.5	4.54	5.46	6.57	AD	AD	IA	IA	IA
11	K202	Yellukunte	Venkatapura	0	950	65.02	Sec.	1.36	3.65	5.05	6.47	7.68	9.49	1.64	2.68	3.71	4.76	5.65	6.98	2.8	1.64	2.26	2.9	3.45	4.25	AD	AD	IA	IA	IA
12	K203	Crompton Greeves	Outer Ring Road	0	1200	148.08	Sec.	1.12	7.2	10.03	12.96	15.55	18.84	1.19	6.43	8.95	11.58	13.89	16.82	2.26	5.4	7.53	9.73	11.67	14.13	IA	IA	IA	IA	IA
13	K204	Near Madivala Tank	Hosur Road	0	705	95.05	Sec.	2.26	4.74	6.57	8.42	10.01	12.34	1.33	2.1	2.9	3.73	4.43	5.46	3.5	1.58	2.18	2.8	3.33	4.11	AD	AD	AD	AD	IA

 Table
 Showing Adequacy Analysis Results for Tavarekere Valley - Existing Hydraulic Flow Conditions

SI.No.	Description	Drain I	Reach	Chaina	age (m)	ent Area Ha.)	Type	Average Velocity V m/sec		Discha	rges (Q	in m³/seo	2)	Av.Drain D in m.	Area	a require	ed for dr	ain (A ir	ו m²)	J Av. Drain (W in m.)		Require	d Drain	Width (I	m)		R	lemarl	ks	
SI	Desc	From	То	From	То	Catchment A A (Ha.)	T	Average V m	1year	2year	5year	10year	20year	Existing	1year	2year	5year	10year	20year	Existing Width (1year	2year	5year	10year	20year	1year	2year	5year	10year	20year
14	K20	5 Muddaramnagar	Bismillahanagar	0	525	66.15	Sec.	3	6.38	8.81	11.28	13.36	16.57	1.3	2.13	2.94	3.76	4.45	5.52	3.8	1.64	2.29	2.93	3.47	4.31	AD	AD	AD	AD	IA
15	K20	6 Tayappanahalli	Bovi Colony	0	1245	94.8	Sec.	2.1	4.51	6.25	8.02	9.54	11.74	2	2.15	2.98	3.82	4.54	5.59	4.4	1.07	1.49	1.91	2.27	2.8	AD	AD	AD	AD	AD
16	K20	7 Bairasandra Extn.	Baivasandra Extention	0	425	61.35	Sec.	2.33	3.44	4.73	6.01	7.05	8.9	1.7	1.48	2.03	2.58	3.03	3.82	2	0.87	1.19	1.52	1.78	2.25	AD	AD	AD	AD	IA
17	K20	7 Baivasandra Extention	Bannerghatta Road	425	1225	178.62	Sec.	2.1	10.24	14.04	17.81	20.86	26.42	1.56	4.87	6.68	8.48	9.93	12.58	4.5	3.12	4.29	5.44	6.37	8.06	AD	AD	IA	IA	IA
18	K20	8 Tilaknagar	Krishnappa Garden	0	425	77.44	Sec.	1.95	4.47	6.12	7.72	9	11.51	2	2.29	3.14	3.96	4.62	5.9	3	1.15	1.57	1.98	2.31	2.95	AD	AD	AD	AD	AD
19	K20	9 Jaya Nagar 4 th Block	J.P. Nagar 2 nd Club Shopping Complex	0	1500	230.85	Sec.	2.9	13.96	19.19	24.41	28.7	36.1	1.9	4.81	6.62	8.42	9.9	12.45	4	2.53	3.48	4.43	5.21	6.55	AD	AD	IA	IA	IA
20	K20	9 Jaya Nagar 4 th Block	J.P. Nagar 2 nd Club Shopping Complex	1500	2825	323.6	Sec.	3.5	19.57	26.92	34.29	40.38	50.64	1.9	5.59	7.69	9.8	11.54	14.47	6.5	2.94	4.05	5.16	6.07	7.61	AD	AD	AD	AD	IA
21	K20	J.P. Nagar 2nd 9 Club Shopping Complex	Ring Road	2825	4500	496	Sec.	2.5	28.76	39.68	50.71	59.99	74.61	2.1	11.5	15.87	20.28	24	29.84	8	5.48	7.56	9.66	11.43	14.21	AD	AD	IA	IA	IA
22	K20	9 Ring Road	Anthappa Layout	4500	6000	627.96	Sec.	1.2	34.3	47.51	61.03	72.66	89.3	1.4	28.58	39.59	50.86	60.55	74.41	10	20.42	28.28	36.33	43.25	53.15	IA	IA	IA	IA	IA
23	K20	9 Anthappa Layout	Madivala Tank	6000	8250	716.14	Sec.	0.9	38.11	52.89	68.12	81.38	99.38	1.5	42.34	58.77	75.69	90.42	110.42	8.5	28.23	39.18	50.46	60.28	73.62	IA	IA	IA	IA	IA
24	K21	0 J.P.Nagar, Puttenhalli	Sarakki Layout	0	1700	120	Sec.	1.8	6.76	9.37	12.05	14.37	17.61	1.8	3.76	5.21	6.7	7.98	9.79	2.2	2.09	2.89	3.72	4.43	5.44	AD	IA	IA	IA	IA

Table	Showing Ad	leguacy Analy	sis Results for	Tavarekere Valley	- Existing H	ydraulic Flow Conditions

				I	r	ſ		una			ary Sr				00		, in the second s										<u> </u>					r.				
about drain	Chai	inage	ent	ła.)	d paved	d open Ia.)	ousness	inutes	ii	Avera Veloci m/se	-	().	(min.)	entration	nt "C"	Rain		ensity " /hour	'i" in		Qı		Q)= 10 C /sec.	.i A	tth in m	ain m	Area	requi	red for	Drain	in m²	Widtl	n requ	ired fo	or drair	ı in m
Description abou	from	þ	Sub Catchment	Total Area (Ha.)	Area of bulitup and paved areas (Ha.)	Area of parks and open space, etc. (Ha.)	Weighted Imperviousness (%)	Inlet Time in minutes	Slope of terain	For terain	For Drain	Flow In drain (min.)	Flow in Terain (min.)	Total time of concentration (min.)	Runoff Coeffiecent "C"	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year)		(For 20 Year)	Existing Ave.width	Ave. Depth of drain	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)
K200	0	1075	A1(a)	19.66	10	9.66	47.98	13.93	0.02	1.5	3.42 5.	24	8.89	28.06	0.414	43.93	60.61	77.48	91.67	113.98	0.99	1.37	1.75	2.58												
			A1(b)	29.77	19.02	10.75	55.14	12.89	0.01	1.2	3.42 5.	24 1	11.11	29.24	0.452	42.72	59.04	75.59	89.63	110.99	1.6	2.21	2.82	4.15												
			Total	49.43						:	3.42										2.59	3.58	4.58	6.72	3.5	1.5	0.8	1.0	1.3	1.6	2.0	0.5	0.7	0.9	1.1	1.3
K207	0	425	A2(a)	35.16	12.16	23.00	39.02	15.23	0.02	1.5	2.33 3.	04	4.44	22.72	0.352	50.63	69.38	87.93	102.90	130.58	1.74	2.38	3.02	4.49												
			A2(c)	26.19	26.19	0.00	75	10	0.01	1.2	2.33 3.	04	12.5	25.54	0.501	46.80	64.37	81.97	96.51	121.10	1.71	2.35	2.99	4.41												
			Total	61.35						:	2.33										3.44	4.73	6.01	8.9	2	1.7	1.5	2.0	2.6	3.0	3.8	0.9	1.2	1.5	1.8	2.2
K208	0	425	A2(b)	18.28	14	4.28	62.12	11.87	0.01	1.2	1.95 3.	63	3.47	18.98	0.42	57.15	77.85	97.93	113.55	146.63	1.23	1.67	2.1	3.14												
			A2(d)	59.16	30	29.16	47.89	13.94	0.01	1.2	1.95 3.	63	4.17	21.74	0.379	52.15	71.36	90.27	105.40	134.33	3.25	4.45	5.62	8.37												
			Total	77.44							1.95										4.47	6.12	7.72	11.51	3	2	2.3	3.1	4.0	4.6	5.9	1.1	1.6	2.0	2.3	3.0
K207	425	1225	A22	39.83	29.83	10.00	61.19	12.01	0.01	1.2	2.1 6.	35	8.33	26.69	0.461	45.43	62.58	79.84	94.21	117.70	2.32	3.19	4.07	6.01												
			Total	178.62							2.1										10.24	14.04	17.81	26.42	4.5	.56	4.9	6.7	8.5	9.9	12.6	3.1	4.3	5.4	6.4	8.1
K200	1075	1850	A3	18.77	5	13.77	34.65	15.87	0.02	1.5	2.8 11	.01	2.22	29.1	0.365	42.86	59.21	75.80	89.85	111.32	0.82	1.13	1.44	2.12												
			A4	21.3	10	11.3	45.82	14.24	0.01	1.2	2.8 11	.01	4.17	29.42	0.41	42.54	58.80	75.31	89.32	110.54	1.03	1.43	1.83	2.69												
			A22	47.35	17.62	29.73	40.47	15.02	0.02	1.5	2.8 11	.01	5.56	31.59	0.4	40.56	56.19	72.17	85.91	105.60	2.13	2.94	3.78	5.53												
			Total	87.42							2.8										3.98	5.5	7.06	10.34												
			Total	315.47							2.8										16.8	23.12	29.44	43.48	4.05	.51	6	8.26	10.51	12.38	15.53	3.97	5.47	6.96	8.2	10.28
K200	1850	2250	A5	33.21	8.21	25	33.6	16.02	0.01	1.2	2.4 15	.63	8.33	39.98	0.396	34.61	48.32	62.68	75.52	90.73	1.27	1.77	2.29	3.32												
			Total	348.68							2.4										18.07	24.88	31.73	46.8	3.77 ·	.61	7.53	10.37	13.22	15.59	19.5	4.68	6.44	8.21	9.69	12.11
K206	0	1245	A21(a)	42.06	22.06	20	48.85	13.8	0.02	1.5	2.1 9.	88	5.56	29.24	0.423	42.72	59.03	75.59	89.62	110.99	2.11	2.92	3.74	5.49												

Land Use Analysis for Tavarekere Valley – Existing Hydraulic Flow Conditions

about drain	Cha	ainage	ant	la.)	d paved	l open la.)	ousness	nutes	ii		rage ity in sec.	nin.)	min.)	of concentration (min.)	nt "C"	Rair	nfall Inte mm/	ensity " 'hour	i" in		Qı		Q)= 10 C /sec.	.i A	th in m		ea re	equire	ed for	Drain	in m²	Width	n requi	ired fo	or drair	ו in m
Description abou	from	to	Sub Catchment	Total Area (Ha.)	Area of bulitup and paved areas (Ha.)	Area of parks and open space, etc. (Ha.)	Weighted Imperviousness (%)	Inlet Time in minutes	Slope of terain	For terain	For Drain	Flow in drain (min.)	Flow in Terain (min.)	Total time of conce (min.)	Runoff Coeffiecent	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year)		(For 20 Year)	Existing Ave.width	Ave. Depth of drain (For 1 Year)		(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)
			A21(b)	52.74	22.74	30	43.71	14.55	0.01	1.2	2.1	9.88	8.33	32.76	0.414	39.57	54.89	70.61	84.21	103.14	2.4	3.33	4.28	6.26												
			Total	94.8							2.1										4.51	6.25	8.02	11.74	4.4	2 2 .	1 3	8.0	3.8	4.5	5.6	1.1	1.5	1.9	2.3	2.8
K200	2250	2500	A6	45.79	20	25.79	44.02	14.51	0.01	1.2	2.21	18.85	9.72	43.08	0.46	32.91	46.07	59.93	72.49	86.47	1.91	2.67	3.47	5.01												
			Total	489.27							2.21										19.97	27.55	35.2	51.8	6.24	1.87 9.0	4 12	2.47 1	15.93	18.83	23.44	4.83	6.67	8.52	10.07	12.54
K205	0	525	A20(a)	33.3	28	5.3	66.25	11.27	0.02	1.5	3	2.92	13.33	27.52	0.49	44.50	61.37	78.38	92.64	115.4	2	2.76	3.53	5.2												
			A20(b)	80.41	54.78	25.63	57.47	12.55	0.01	1.2	3	2.92	13.89	29.36	0.460	42.61	58.89	75.41	89.43	110.71	4.38	6.05	7.75	11.38												
			Total	113.71							3										6.38	8.81	11.28	16.57	3.8	1.3 2.	1 2	2.9	3.8	4.5	5.5	1.6	2.3	2.9	3.4	4.2
K200	2500	4350	A7	33.53	10	23.53	36.4	15.61	0.01	1.2	1.65	18.69	11.11	45.41	0.428	31.77	44.54	58.07	70.43	83.58	1.27	1.77	2.31	3.33												
			A8	40.74	14.84	25.9	40.03	15.09	0.01	1.2	1.65	18.69	13.89	47.66	0.45	30.75	43.19	56.41	68.59	81.02	1.57	2.2	2.88	4.13												
			A19	80.76	30.76	50	40.95	14.95	0.01	1.2	1.65	18.69	16.67	50.31	0.46	29.65	41.72	54.62	66.59	78.25	3.06	4.31	5.64	8.07												
			Total	155.03							1.65										5.89	8.28	10.83	15.54												
			Total	758.01							1.65										25.87	35.83	46.02	67.34	8.28	2.03 15	7 2	1.7	27.9	33.2	40.8	7.7	10.7	13.7	16.4	20.1
K204	0	705	A18 (a)	49	20	29	42.45	14.73	0.02	1.5	2.26	5.2	8.89	28.82	0.393	43.14	59.58	76.24	90.33	112.02	2.31	3.19	4.08	6												
			A 18 (b)	46.05	33	13.05	59.41	12.27	0.01	1.2	2.26	5.2	15.28	32.74	0.480	39.59	54.91	70.64	84.24	103.18	2.43	3.37	4.34	6.34												
			Total	95.05							2.26										4.74	6.57	8.42	12.34	3.5	1.33 2.	1 2	2.9	3.7	4.4	5.5	1.6	2.2	2.8	3.3	4.1
K200	4350	5450	A10	34.49	25	9.49	59.87	12.2	0.01	1.2	1.82	32.97	11.11	56.28	0.55	27.50	38.83	51.07	62.63	72.79	1.46	2.06	2.71	3.86												
			A9	45.33	34.9	10.43	62.35	11.84	0.01	1.2	1.82	32.97	12.5	57.31	0.57	27.16	38.38	50.52	62.01	71.95	1.95	2.75	3.62	5.15												
			A17	58.12	32.12	26	50.4	13.58	0.01	1.2	1.82	32.97	12.5	59.05	0.522	26.62	37.65	49.62	61.00	70.58	2.24	3.18	4.18	5.95												
			Total	92.61							1.82										5.65	7.99	10.51	14.97												
			Total	945.67							1.82										31.52	43.82	56.54	82.31	12.37	2.14 17	3 24	4.1	31.1	37.2	45.2	8.1	11.2	14.5	17.4	21.1

about drain	Cha	inage	ant	a.)	d paved	l open a.)	nsness	nutes	. <u>c</u>	Aver Veloci m/s	ity in	nin.)	min.)	entration	nt "C"	Rair	nfall Inte mm/	ensity " hour	i" in		Qu	uantity (m³	Q)= 10 C /sec.	.i A	th in m		rea re	equire	ed for	Drain	in m²	Width	n requi	ired fo	or drain	ו in m
Description abou	from	to	Sub Catchment	Total Area (Ha.)	Area of bulitup and p areas (Ha.)	Area of parks and open space, etc. (Ha.)	Weighted Imperviousness (%)	Inlet Time in minutes	Slope of terain	For terain	For Drain	Flow in drain (min.)	Flow in Terain (min.)	Total time of concentration (min.)	Runoff Coeffiecent	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year)		(For 20 Year)	Existing Ave.width	Ave. Depth of drain	- 0	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)
K203	0	1200	A15(a)	23.86	18	5.86	61.49	11.96	0.01	1.2	1.12	17.86	5.56	35.38	0.5	37.58	52.26	67.44	80.75	98.17	1.24	1.73	2.23	3.25										L		
			A15(b)	43	27.5	15.5	55.17	12.88	0.01	1.2	1.12	17.86	5.56	36.3	0.48	36.94	51.41	66.41	79.62	96.56	2.11	2.93	3.79	5.51												
			A16	81.22	50	31.22	53.86	13.08	0.02	1.5	1.12	17.86	6.67	37.6	0.47	36.07	50.26	65.02	78.1	94.39	3.85	5.36	6.94	10.08												
			Total	148.08							1.12										7.2	10.03	12.96	18.84	2.26	1.19 6	4 9	.0	11.6	13.9	16.8	5.4	7.5	9.7	11.7	14.1
K200	5450	5800	A11	49.99	41.38	8.61	65.53	11.38	0.01	1.2	1.3	45.51	5.56	62.45	0.588	25.64	36.33	47.99	59.16	68.08	2.09	2.97	3.92	5.56												
			Total	1143.74							1.3			62.45							33.61	46.78	60.46	87.87	14	1.76 2 5	.9 30	6.0	46.5	55.8	67.6	14.7	20.4	26.4	31.7	38.4
K202	0	950	A14(a)	46.84	32.57	14.27	58.24	12.44	0.01	1.2	1.36	11.64	5.56	29.63	0.464	42.34	58.53	74.99	88.97	110.03	2.56	3.53	4.53	6.65												
			A14(b)	18.18	18.18	0	75	10	0.01	1.2	1.36	11.64	9.72	31.36	0.531	40.75	56.44	72.48	86.25	106.09	1.09	1.51	1.94	2.84												
			Total	65.02							1.36										3.65	5.05	6.47	9.49	2.8	1.64 2	7 3	.7	4.8	5.7	7.0	1.6	2.3	2.9	3.4	4.3
K200	5800	6075	Total	1208.76							1.76	3.37		65.82							37.26	51.83	66.93	97.36	14	1.96 2 1	.2 2	9.4	38.0	45.6	55.3	10.8	15.0	19.4	23.3	28.2
K201	0	1350	A12(c)	137.93	102	35.93	60.67	12.08	0.01	1.2	1.68	13.39	13.89	39.37	0.51	34.97	48.81	63.26	76.16	91.64	6.83	9.53	12.35	17.89	3.66	1.62 4	.1 5	.7	7.3	8.8	10.6	2.5	3.5	4.5	5.5	6.6
K200	6075	7625	A12(b)	252.2	88.3	163.9	39.26	15.2	0.01	1.2	1.8	49.77	11.11	76.08	0.478	22.45	32.02	42.63	53.10	59.94	7.51	10.72	14.27	20.06												
			A13	129.22	54.22	75	43.08	14.64	0.01	1.2	1.8	49.77	15.28	79.69	0.495	21.76	31.08	41.47	51.77	58.18	3.86	5.52	7.36	10.33												
			A12(a)	35.75	25.02	10.73	58.49	12.4	0.01	1.2	1.8	49.77	18.06	80.23	0.56	21.66	30.95	41.3	51.58	57.93	1.2	1.72	2.29	3.21												
			Total	417.17																	12.58	17.95	23.92	33.61												
			Total	1763.86							1.8										49.84	69.78	90.85	130.96	20	2 27	.7 3	3. 8	50.5	61.1	72.8	13.8	19.4	25.2	30.6	36.4
K209	0	1500	A23(a)	134.11	95.79	38.32	59.28	12.29	0.02	1.5	2.9	8.62	3.33	24.24	0.443	48.47	66.56	84.58	99.31	125.24	8	10.98	13.95	20.66												
			A23(b)	66.74	56.25	10.49	66.36	11.26	0.02	1.5	2.9	8.62	5.56	25.43	0.476	46.93	64.55	82.18	96.73	121.42	4.14	5.7	7.26	10.72												
			A22	30	25.4	4.6	66.57	11.23	0.01	1.2	2.9	8.62	6.94	26.79	0.482	45.31	62.43	79.66	94.02	117.42	1.82	2.51	3.2	4.71												
			Total	230.85							2.9										13.96	19.19	24.41	36.1	4	1.9 4	8 6	.6	8.4	9.9	12.4	2.5	3.5	4.4	5.2	6.6

about drain	Chair	nage	ent	la.)	d paved	l open la.)	ousness	nutes	ii	Veloc	erage city in sec.	nin.)	min.)	entration	nt "C"	Rair	nfall Inte mm/	ensity " 'hour	'i" in		Qı	uantity (m³	Q)= 10 C /sec.	.i A	th in m		Area	requii	red for	Drain	in m²	Width	ı requi	ired fo	or drai	ו in m
Description abou	from	to	Sub Catchment	Total Area (Ha.)	Area of bulitup and paved areas (Ha.)	Area of parks and open space, etc. (Ha.)	Weighted Imperviousness (%)	Inlet Time in minutes	Slope of terain	For terain	For Drain	Flow in drain (min.)	Flow in Terain (min.)	Total time of concentration (min.)	Runoff Coeffiecent	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year)		(For 20 Year)	Existing Ave.width	Ave. Depth of drain	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)
K209	1500	2825	A23(a)	29.47	26.9	2.57	70.2	10.7	0.02	1.5	3.5	9.52	6.67	26.89	0.498	45.20	62.29	79.48	93.83	117.15	1.84	2.54	3.24	4.78												
			A23(b)	32.56	28.15	4.41	67.55	11.08	0.01	1.2	3.5	9.52	6.94	27.55	0.491	44.47	61.33	78.33	92.59	115.32	1.97	2.72	3.48	5.12												
			A24(a)	30.72	25.12	5.6	64.97	11.46	0.01	1.2	3.5	9.52	7.64	28.62	0.484	43.34	59.85	76.57	90.68	112.53	1.79	2.47	3.16	4.64												
			Total	92.75							3.5										5.61	7.73	9.88	14.54												
			Total	323.6							3.5										19.57	26.92	34.29	50.64	6.5	1.9	5.6	7.7	9.8	11.5	14.5	2.9	4.0	5.2	6.1	7.6
K210	0	1700	A24(a)	120	102.26	17.74	66.87	11.18	0.02	1.5	1.8	15.74	5.56	32.48	0.509	39.81	55.20	70.98	84.62	103.73	6.76	9.37	12.05	17.61												
			Total	120							1.8										6.76	9.37	12.05	17.61	2.2	1.8	3.8	5.2	6.7	8.0	9.8	2.1	2.9	3.7	4.4	5.4
K209	2825	4500	A24(b)	22.9	18	4.9	63.23	11.71	0.01	1.2	2.5	16.67	6.94	35.32	0.51	37.62	52.31	67.50	80.82	98.27	1.22	1.69	2.18	3.17												
			A24(a)	29.5	10	19.5	38.64	15.29	0.01	1.2	2.5	16.67	5.56	37.51	0.41	36.13	50.34	65.12	78.20	94.53	1.22	1.69	2.19	3.18												
			Total	52.4							2.5										2.43	3.38	4.37	6.35												
			Total	496							2.5										28.76	39.68	50.71	74.61	8	2.1 1	1.5	15.9	20.3	24.0	29.8	5.5	7.6	9.7	11.4	14.2
K209	4500	6000	A25(a)	34.37	20	14.37	52	13.34	0.02	1.5	1.2	34.72	8.89	56.96	0.52	27.28	38.53	50.71	62.22	72.23	1.37	1.93	2.54	3.62												
			A25(b)	37.59	25	12.59	56.58	12.68	0.01	1.2	1.2	34.72	12.5	59.9	0.55	26.37	37.31	49.20	60.52	69.93	1.51	2.13	2.81	4												
			A19	60	51.45	8.55	67.16	11.14	0.02	1.5	1.2	34.72	11.11	56.97	0.59	27.27	38.52	50.70	62.21	72.22	2.67	3.78	4.97	7.08												
			Total	131.96							1.2										5.55	7.84	10.32	14.69					<u> </u>							
			Total	627.96							1.2										34.3	47.51	61.03	89.3	10	1.4 2	8.6	39.6	50.9	60.6	74.4	20.4	28.3	36.3	43.3	53.2
K209	6000	8250	A26(a)	40.58	33.68	6.9	65.65	11.36	0.01	1.2	0.9	37.04	9.72	58.12	0.584	26.91	38.04	50.09	61.53	71.30	1.77	2.5	3.3	4.69					ļ							
			A26(b)	47.6	38.55	9.05	64.54	11.52	0.01	1.2	0.9	37.04	11.11	59.67	0.582	26.44	37.40	49.31	60.65	70.10	2.03	2.88	3.79	5.39												
			Total	88.18							0.9										3.8	5.38	7.09	10.08												
			Total	716.14							0.9										38.11	52.89	68.12	99.38	8.5	1.5 4	2.3	58.8	75.7	90.4	110.4	28.2	39.2	50.5	60.3	73.6

			Tuble			-		-	, ·			101 14			une.	, -	••••••	P -	, a riya											_
SI.No.	Description	Drain	Reach	Chaina	age (m)	ient Area Ha.)	Type	Average Velocity V m/sec		Discha	arges (Q	in m³/sec)		Av.Drain D in m.	Are	ea requi	red for d	rain (A i	in m²)	Existing Av. Drain Width (W in m.)	F	Requirec	I Drain V	Vidth (m	ı)		Re	emark	s	
S	Desc	From	То	From	To	Catchment A A (Ha.)	Ϋ́,	Average V n	1 year	2year	5year	10year	20year	Existing Depth	1 year	2year	5year	10year	20year	Existing Width (1 year	2year	5year	10year	20year	1 year	2year	5year	10year	ZUyear
1	K200	Nimhans Hospital	Mundkar Fire service college	0	1075	49.43	Pri.	5.29	2.59	3.58	4.58	5.42	6.72	1.5	0.49	0.68	0.86	1.02	1.27	3.5	0.33	0.45	0.58	0.68	0.85	AD	AD .	AD /	AD A	D
2	K200	Mundkar Fire service college	Tank Bund Road, Near Bismillahanagar	1075	1850	87.42	Pri.	3.7	16.84	23.17	29.51	34.75	43.59	1.6	4.55	6.26	7.98	9.39	11.78	4.05	2.85	3.91	4.98	5.87	7.36	AD	AD	IA	IA I	A
3	K200		Lakshmi theater, near Bismillahanagar	1850	2250	348.68	Pri.	4.35	18.11	24.94	31.8	37.51	46.91	1.8	4.17	5.74	7.32	8.63	10.79	4.1	2.31	3.19	4.06	4.79	5.99	AD	AD .	AD	IA I	A
4	K200	Lakshmi theater, near Bismillahanagar	Tavarekare Main Road	2250	2500	489.27	Pri.	3.71	20.01	27.61	35.27	41.71	51.91	2	5.39	7.43	9.5	11.23	13.98	7	2.69	3.72	4.75	5.62	6.99	AD	AD .	AD /	AD A	D
5	K200	Tavarekare Main Road	CSB Jr., Near Hosur Road	2500	4350	758.01	Pri.	3.59	25.91	35.89	46.1	54.88	67.45	2.4	7.22	10	12.84	15.29	18.79	10.5	3.01	4.17	5.35	6.37	7.83	AD	AD .	AD /	AD A	D
6	K200	CSB Jr., Near Hosur Road	HSRlayout Sector –VII, 5 th Main Road	4350	5450	945.67	Pri.	3.36	31.56	43.87	56.61	67.79	82.42	2.2	9.4	13.07	16.86	20.2	24.55	12.37	4.27	5.94	7.67	9.18	11.16	AD	AD .	AD /	AD A	D
7	K200	HSRlayout Sector –VII, 5th Main Road	HSRlayout Sector –VII, 9 th Main Road	5450	5800	1143.74	Pri.	2.4	33.65	46.84	60.53	72.63	87.98	1.9	14.02	19.51	25.21	30.25	36.65	14	7.38	10.27	13.27	15.92	19.29	AD	AD .	AD	IA I	A
8	K200	HSRlayout Sector –VII, 9th Main Road	HSRlayout Sector –VII, 14 th Main Road (Agara Tank)	5800	6075	1208.76	Pri.	3.14	37.33	51.92	67.05	80.37	97.53	2	11.9	16.56	21.38	25.63	31.11	14	5.95	8.28	10.69	12.82	15.55	AD	AD .	AD /	AD I/	A
9	K200	HSRlayout Sector –VII, 14th Main Road (Agara Tank)	Bellandur Tank	6075	7625	1763.86	Pri.	2.38	49.91	69.87	90.97	110.19	131.14	2.2	20.97	29.36	38.23	46.3	55.1	24	9.53	13.35	17.38	21.05	25.05	AD	AD .	AD /	AD I/	A
10	K201	Vanganahalli	Near Agara Tank	0	1350	137.93	Sec.	2.56	6.83	9.53	12.35	14.87	17.89	1.7	2.66	3.72	4.82	5.8	6.98	3.8	1.57	2.19	2.83	3.41	4.1	AD	AD .	AD /	AD I/	A
11	K202	Yellukunte	Venkatapura	0	950	65.02	Sec.	2.15	3.67	5.08	6.52	7.74	9.55	1.7	1.71	2.36	3.03	3.6	4.44	2.8	1.01	1.39	1.78	2.12	2.61	AD	AD .	AD .	AD A	D
12	K203	Crompton Greeves	Outer Ring Road	0	1200	148.08	Sec.	2.2	7.2	10.03	12.96	15.55	18.84	1.4	3.28	4.57	5.9	7.08	8.58	4	2.34	3.26	4.22	5.06	6.13	AD	AD	IA	IA I	A
13	K204	Near Madivala Tank	Hosur Road	0	705	95.05	Sec.	3.19	4.74	6.57	8.42	10.01	12.34	1.4	1.49	2.06	2.64	3.14	3.87	3.5	1.06	1.47	1.89	2.25	2.77	AD	AD .	AD .	AD A	D
14	K205	Muddaramnagar	Bismillahanagar	0	525	66.15	Sec.	5.45	6.38	8.81	11.28	13.36	16.57	1.3	1.17	1.62	2.07	2.45	3.04	3.8	0.9	2.29	2.93	3.47	4.31	AD	AD .	AD .	AD I	A

 Table
 Showing
 Adequacy
 Analysis
 Results for Tavarekere
 Valley
 - For Improved
 Hydraulic
 Flow
 Conditions

SI.No.	Description	Drain I	Reach	Chaina	age (m)	Catchment Area A (Ha.)	Type	Average Velocity V m/sec	-	Discha	arges (Q	in m ³ /sec)		Av.Drain D in m.		a requir	red for d	- Irain (A	in m²)	Existing Av. Drain Width (W in m.)	F	Required	d Drain V	Width (m	1)		R	emarks	
S	Desc	From	То	From	То	Catchm A (Ļ	Average V m	1 year	2year	5year	10year	20year	Existing Depth	1 year	2year	5year	10year	20year	Existing Width (1 year	2year	5year	10year	20year	1 year	2year	5year	10year 20year
15	K206	Tayappanahalli	Bovi Colony	0	1245	94.8	Sec.	4.36	4.51	6.25	8.02	9.54	11.74	2	1.03	1.43	1.84	2.19	2.69	4.4	0.52	0.72	0.92	1.09	1.35	AD	AD	AD 4	AD AD
16	K207		Baivasandra Extention	0	425	61.35	Sec.	3.98	3.49	4.79	6.08	7.14	9.01	1.7	0.88	1.2	1.53	1.79	2.26	2	0.51	0.71	0.9	1.05	1.33	AD	AD	AD 4	AD AD
17	K207		Bannerghatta Road	425	1225	178.62	Sec.	4.27	10.28	14.1	17.88	20.95	26.53	1.6	2.41	3.3	4.19	4.91	6.22	6	1.51	2.07	2.62	3.07	3.89	AD	AD	AD 4	AD AD
18	K208		Krishnappa Garden	0	425	77.44	Sec.	3.79	4.47	6.12	7.72	9	11.51	2	1.18	1.61	2.04	2.37	3.04	3	0.59	0.81	1.02	1.19	1.52	AD	AD	AD 4	AD AD
19	K209		J.P. Nagar 2 nd Club Shopping Complex	0	1500	230.85	Sec.	3.33	13.96	19.19	24.41	28.7	36.1	1.9	4.19	5.76	7.32	8.61	10.83	4	2.2	3.03	3.85	4.53	5.7	AD	AD	AD I	IA IA
20	K209		J.P. Nagar 2 nd Club Shopping Complex	1500	2825	323.6	Sec.	3.92	19.57	26.92	34.29	40.38	50.64	1.9	4.99	6.86	8.74	10.3	12.91	6.5	2.63	3.61	4.6	5.42	6.8	AD	AD	AD 4	AD IA
21	K209	J.P. Nagar 2nd Club Shopping Complex	Ring Road	2825	4500	496	Sec.	3.73	28.76	39.68	50.71	59.99	74.61	2.2	7.71	10.64	13.6	16.09	20.01	11	3.5	4.84	6.18	7.31	9.09	AD	AD	AD 4	AD AD
22	K209	Ring Road	Anthappa Layout	4500	6000	627.96	Sec.	1.5	34.3	47.51	61.03	72.66	89.3	1.4	22.85	31.65	40.65	48.4	59.48	10	16.32	22.61	29.04	34.57	42.49	IA	IA	IAI	IA IA
23	K209	Anthappa Layout	Madivala Tank	6000	8250	716.14	Sec.	0.87	38.11	52.89	68.12	81.38	99.38	1.5	43.57	60.47	77.88	93.04	113.63	8.5	29.04	40.32	51.92	62.03	75.75	IA	IA	IAI	IA IA
24	K210	J.P.Nagar, Puttenhalli	Sarakki Layout	0	1700	120	Sec.	2.49	6.76	9.37	12.05	14.37	17.61	1.8	2.72	3.77	4.85	5.78	7.08	2.2	1.51	2.09	2.69	3.21	3.93	AD	AD	IAI	IA IA

 Table
 Showing
 Adequacy
 Analysis
 Results for Tavarekere
 Valley
 - For Improved
 Hydraulic
 Flow
 Conditions

about drain	Chai	nage	int	a.)	d paved	l open a.)	nsness	nutes	Ë	Aver Veloc m/s	And Inc.	(min.)	entration	nt "C"	Rair		ensity " /hour	i" in		Q	uantity (Q)= 10 C	C.iAm ^s	/sec.	th in m	ain m	Are	ea requ	iired for	Drain	in m²	Wi	dth requ	uired for	drain i	n m
Description abou	from	þ	Sub Catchment	Total Area (Ha.)	Area of bulitup and paved areas (Ha.)	Area of parks and open space, etc. (Ha.)	Weighted Imperviousness (%)	Inlet Time in minutes	Slope of terain	For terain	For Drain		Flow in Terain (min.)	Total time of concentration (min.)	Runoff Coeffiecent "C"	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year)		(For 10 Year)	(For 20 Year)	Existing Ave.width	Ave. Depth of drain	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)
K200	0	1075	A1(a)	19.66	10	9.66	47.98	13.93	0.02	1.5	3.42 5.	24 8	8.89	28.06	0.414	43.93	60.61	77.48	91.67	113.98	0.99	1.37	1.75	2.07	2.58												
			A1(b)	29.77	19.02	10.75	55.14	12.89	0.01	1.2	3.42 5.	24 1	1.11	29.24	0.452	42.72	59.04	75.59	89.63	110.99	1.6	2.21	2.82	3.35	4.15												
			Total	49.43							3.42										2.59	3.58	4.58	5.42	6.72	3.5	1.5	0.8	1.0	1.3	1.6	2.0	0.5	0.7	0.9	1.1	1.3
K207	0	425	A2(a)	35.16	12.16	23.00	39.02	15.23	0.02	1.5	2.33 3.	04 4	4.44	22.72	0.352	50.63	69.38	87.93	102.90	130.58	1.74	2.38	3.02	3.54	4.49												
			A2(c)	26.19	26.19	0.00	75	10	0.01	1.2	2.33 3.	04 1	12.5	25.54	0.513	46.80	64.37	81.97	96.51	121.10	1.75	2.4	3.06	3.6	4.52												
			Total	61.35							2.33										3.49	4.79	6.08	7.14	9.01	2	1.7	1.5	2.1	2.6	3.1	3.9	0.9	1.2	1.5	1.8	2.3
K208	0	425	A2(b)	18.28	14	4.28	62.12	11.87	0.01	1.2	1.95 3.	63 3	3.47	18.98	0.42	57.15	77.85	97.93	113.55	146.63	1.23	1.67	2.1	2.43	3.14												
			A2(d)	59.16	30	29.16	47.89	13.94	0.01	1.2	1.95 3.	63 4	4.17	21.74	0.379	52.15	71.36	90.27	105.40	134.33	3.25	4.45	5.62	6.57	8.37												
			Total	77.44							1.95										4.47	6.12	7.72	9	11.51	3	2	2.3	3.1	4.0	4.6	5.9	1.1	1.6	2.0	2.3	3.0
K207	425	1225	A22	39.83	29.83	10.00	61.19	12.01	0.01	1.2	2.1 6.	35 8	8.33	26.69	0.461	45.43	62.58	79.84	94.21	117.70	2.32	3.19	4.07	4.81	6.01												
			Total	178.62							2.1										10.28	14.1	17.88	20.95	26.53	4.5	1.56	4.9	6.7	8.5	10.0	12.6	3.1	4.3	5.5	6.4	8.1
K200	1075	1850	A3	18.77	5	13.77	34.65	15.87	0.02	1.5	2.8 11	01 2	2.22	29.1	0.365	42.86	59.21	75.80	89.85	111.32	0.82	1.13	1.44	1.71	2.12												
			A4	21.3	10	11.3	45.82	14.24	0.01	1.2	2.8 11	01 4	4.17	29.42	0.41	42.54	58.80	75.31	89.32	110.54	1.03	1.43	1.83	2.17	2.69												
			A22	47.35	17.62	29.73	40.47	15.02	0.02	1.5	2.8 11	01 5	5.56	31.59	0.4	40.56	56.19	72.17	85.91	105.60	2.13	2.94	3.78	4.5	5.53												
			Total	87.42							2.8										3.98	5.5	7.06	8.38	10.34												
			Total	315.47							2.8										16.84	23.17	29.51	34.75	43.59	4.05	1.51	6.02	8.28	10.54	12.41	15.57	3.98	5.48	6.98	8.22	10.31
K200	1850	2250	A5	33.21	8.21	25	33.6	16.02	0.01	1.2	2.4 15	63 8	8.33	39.98	0.396	34.61	48.32	62.68	75.52	90.73	1.27	1.77	2.29	2.76	3.32												
	<u> </u>		Total	348.68							2.4										18.11	24.94	31.8	37.51	46.91	3.77	1.61	7.55	10.39	13.25	15.63	19.54	4.69	6.45	8.23	9.71	12.14
K206	0	1245	A21(a)	42.06	22.06	20	48.85	13.8	0.02	1.5	2.1 9.	38 5	5.56	29.24	0.423	42.72	59.03	75.59	89.62	110.99	2.11	2.92	3.74	4.43	5.49									 			
			A21(b)	52.74	22.74	30	43.71	14.55	0.01	1.2	2.1 9.	38 8	8.33	32.76	0.414	39.57	54.89	70.61	84.21	103.14	2.4	3.33	4.28	5.11	6.26				<u></u>								

Land Use Analysis for Tavarekere Valley – Hydraulic Flow Conditions Clean Condition

STUP Consultants Ltd.

about drain	Chai	nage	ant	la.)	d paved	l open la.)	ousness	nutes		Avera Velocit m/se	°.	min.)	(min.)	entration	nt "C"	Rain	nfall Inte mm/		i" in		QL	antity (Q)= 10 C	C.iA m³	/sec.	th in m	ain m	Are	ea requi	ired for	Drain i	n m²	Wi	dth requ	uired for	drain ir	ı m
Description abou	from	to	Sub Catchment	Total Area (Ha.)	Area of bulitup and paved areas (Ha.)	Area of parks and open space, etc. (Ha.)	Weighted Imperviousness (%)	Inlet Time in minutes	Slope of terain	For terain	For Drain	Flow in drain (min.)	Flow in Terain (min.)	Total time of concentration (min.)	Runoff Coeffiecent "C"	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year)		(For 10 Year)	(For 20 Year)	Existing Ave.width in m	Ave. Depth of drain	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)
			Total	94.8						2	2.1										4.51	6.25	8.02	9.54	11.74	4.4	2	2.1	3.0	3.8	4.5	5.6	1.1	1.5	1.9	2.3	2.8
K200	2250	2500	A6	45.79	20	25.79	44.02	14.51	0.01	1.2 2	.21 18	8.85	9.72	43.08	0.46	32.91	46.07	59.93	72.49	86.47	1.91	2.67	3.47	4.2	5.01												
			Total	489.27						2	.21										20.01	27.61	35.27	41.71	51.91	6.24	1.87	9.06	12.49	15.96	18.87	23.49	4.84	6.68	8.53	10.09	12.56
K205	0	525	A20(a)	33.3	28	5.3	66.25	11.27	0.02	1.5	3 2	2.92	13.33	27.52	0.49	44.50	61.37	78.38	92.64	115.4	2	2.76	3.53	4.17	5.2												
			A20(b)	80.41	54.78	25.63	57.47	12.55	0.01	1.2	3 2	2.92	13.89	29.36	0.460	42.61	58.89	75.41	89.43	110.71	4.38	6.05	7.75	9.19	11.38												
			Total	113.71							3										6.38	8.81	11.28	13.36	16.57	3.8	1.3	2.1	2.9	3.8	4.5	5.5	1.6	2.3	2.9	3.4	4.2
K200	2500	4350	A7	33.53	10	23.53	36.4	15.61	0.01	1.2 1	.65 18	8.69	11.11	45.41	0.428	31.77	44.54	58.07	70.43	83.58	1.27	1.77	2.31	2.8	3.33												
			A8	40.74	14.84	25.9	40.03	15.09	0.01	1.2 1	.65 18	8.69	13.89	47.66	0.45	30.75	43.19	56.41	68.59	81.02	1.57	2.2	2.88	3.5	4.13												
			A19	80.76	30.76	50	40.95	14.95	0.01	1.2 1	.65 18	8.69	16.67	50.31	0.46	29.65	41.72	54.62	66.59	78.25	3.06	4.31	5.64	6.87	8.07												
			Total	155.03						1	.65										5.89	8.28	10.83	13.18	15.54												
			Total	758.01						1	.65										25.91	35.89	46.1	54.88	67.45	8.28	2.03	15.7	21.8	27.9	33.3	40.9	7.7	10.7	13.8	16.4	20.1
K204	0	705	A18 (a)	49	20	29	42.45	14.73	0.02	1.5 2	.26 5	5.2	8.89	28.82	0.393	43.14	59.58	76.24	90.33	112.02	2.31	3.19	4.08	4.84	6												
			A 18 (b)	46.05	33	13.05	59.41	12.27	0.01	1.2 2	.26 5	5.2	15.28	32.74	0.480	39.59	54.91	70.64	84.24	103.18	2.43	3.37	4.34	5.18	6.34												
			Total	95.05						2	.26										4.74	6.57	8.42	10.01	12.34	3.5	1.33	2.1	2.9	3.7	4.4	5.5	1.6	2.2	2.8	3.3	4.1
K200	4350	5450	A10	34.49	25	9.49	59.87	12.2	0.01	1.2 1	.82 32	2.97	11.11	56.28	0.55	27.50	38.83	51.07	62.63	72.79	1.46	2.06	2.71	3.32	3.86												
			A9	45.33	34.9	10.43	62.35	11.84	0.01	1.2 1	.82 32	2.97	12.5	57.31	0.57	27.16	38.38	50.52	62.01	71.95	1.95	2.75	3.62	4.44	5.15												
			A17	58.12	32.12	26	50.4	13.58	0.01	1.2 1	.82 32	2.97	12.5	59.05	0.522	26.62	37.65	49.62	61.00	70.58	2.24	3.18	4.18	5.14	5.95												
			Total	92.61						1	.82										5.65	7.99	10.51	12.91	14.97												
			Total	945.67						1	.82										31.56	43.87	56.61	67.79	82.42	12.37	2.14	17.3	24.1	31.1	37.2	45.3	8.1	11.3	14.5	17.4	21.2
K203	0	1200	A15(a)	23.86	18	5.86	61.49	11.96	0.01	1.2 1	.12 17	7.86	5.56	35.38	0.5	37.58	52.26	67.44	80.75	98.17	1.24	1.73	2.23	2.67	3.25												
			A15(b)	43	27.5	15.5	55.17	12.88	0.01	1.2 1	.12 17	7.86	5.56	36.3	0.48	36.94	51.41	66.41	79.62	96.56	2.11	2.93	3.79	4.55	5.51												

about drain	Chai	nage	ant	la.)	d paved	lopen a.)	nsness	nutes	Ë	Velo	rage city in sec.	nin.)	min.)	entration	nt "C"	Rain	ifall Inte mm/	ensity " hour	i" in		Qu	uantity (Q)= 10 C	.iAm³	/sec.	th in m	ain m	Are	ea requ	ired for	Drain	in m²	Wi	dth requ	uired for	drain in	m
Description abou	from	to	Sub Catchment	Total Area (Ha.)	Area of bulitup and paved areas (Ha.)	Area of parks and open space, etc. (Ha.)	Weighted Imperviousness (%)	Inlet Time in minutes	Slope of terain	For terain	For Drain	Flow in drain (min.)	Flow in Terain (min.)	Total time of concentration (min.)	Runoff Coeffiecent "C"	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year)		(For 10 Year)	(For 20 Year)	Existing Ave.width in m	Ave. Depth of drain	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)
			A16	81.22	50	31.22	53.86	13.08	0.02	1.5	1.12	17.86	6.67	37.6	0.47	36.07	50.26	65.02	78.1	94.39	3.85	5.36	6.94	8.34	10.08												
			Total	148.08							1.12										7.2	10.03	12.96	15.55	18.84	2.26	1.19	6.4	9.0	11.6	13.9	16.8	5.4	7.5	9.7	11.7	14.1
K200	5450	5800	A11	49.99	41.38	8.61	65.53	11.38	0.01	1.2	1.3	45.51	5.56	62.45	0.588	25.64	36.33	47.99	59.16	68.08	2.09	2.97	3.92	4.83	5.56												
			Total	1143.74							1.3			62.45							33.65	46.84	60.53	72.63	87.98	14	1.76	25.9	36.0	46.6	55.9	67.7	14.7	20.5	26.5	31.7	38.5
K202	0	950	A14(a)	46.84	32.57	14.27	58.24	12.44	0.01	1.2	1.36	11.64	5.56	29.63	0.464	42.34	58.53	74.99	88.97	110.03	2.56	3.53	4.53	5.37	6.65												
			A14(b)	18.18	18.18	0	75	10	0.01	1.2	1.36	11.64	9.72	31.36	0.543	40.75	56.44	72.48	86.25	106.09	1.12	1.55	1.99	2.37	2.91												
			Total	65.02							1.36										3.67	5.08	6.52	7.74	9.55	2.8	1.64	2.7	3.7	4.8	5.7	7.0	1.6	2.3	2.9	3.5	4.3
K200	5800	6075	Total	1208.76							1.76	3.37		65.82							37.33	51.92	67.05	80.37	97.53	14	1.96	21.2	29.5	38.1	45.7	55.4	10.8	15.1	19.4	23.3	28.3
K201	0	1350	A12(c)	137.93	102	35.93	60.67	12.08	0.01	1.2	1.68	13.39	13.89	39.37	0.51	34.97	48.81	63.26	76.16	91.64	6.83	9.53	12.35	14.87	17.89	3.66	1.62	4.1	5.7	7.3	8.8	10.6	2.5	3.5	4.5	5.5	6.6
K200	6075	7625	A12(b)	252.2	88.3	163.9	39.26	15.2	0.01	1.2	1.8	49.77	11.11	76.08	0.478	22.45	32.02	42.63	53.10	59.94	7.51	10.72	14.27	17.77	20.06												
			A13	129.22	54.22	75	43.08	14.64	0.01	1.2	1.8	49.77	15.28	79.69	0.495	21.76	31.08	41.47	51.77	58.18	3.86	5.52	7.36	9.19	10.33												
			A12(a)	35.75	25.02	10.73	58.49	12.4	0.01	1.2	1.8	49.77	18.06	80.23	0.56	21.66	30.95	41.3	51.58	57.93	1.2	1.72	2.29	2.86	3.21												
			Total	417.17																	12.58	17.95	23.92	29.83	33.61												
			Total	1763.86							1.8										49.91	69.87	90.97	110.19	131.14	20	2	27.7	38.8	50.5	61.2	72.9	13.9	19.4	25.3	30.6	36.4
K209	0	1500	A23(a)	134.11	95.79	38.32	59.28	12.29	0.02	1.5	2.9	8.62	3.33	24.24	0.443	48.47	66.56	84.58	99.31	125.24	8	10.98	13.95	16.38	20.66												
			A23(b)	66.74	56.25	10.49	66.36	11.26	0.02	1.5	2.9	8.62	5.56	25.43	0.476	46.93	64.55	82.18	96.73	121.42	4.14	5.7	7.26	8.54	10.72												
			A22	30	25.4	4.6	66.57	11.23	0.01	1.2	2.9	8.62	6.94	26.79	0.482	45.31	62.43	79.66	94.02	117.42	1.82	2.51	3.2	3.77	4.71												
			Total	230.85							2.9										13.96	19.19	24.41	28.7	36.1	4	1.9	4.8	6.6	8.4	9.9	12.4	2.5	3.5	4.4	5.2	6.6
K209	1500	2825	A23(a)	29.47	26.9	2.57	70.2	10.7	0.02	1.5	3.5	9.52	6.67	26.89	0.498	45.20	62.29	79.48	93.83	117.15	1.84	2.54	3.24	3.82	4.78												
			A23(b)	32.56	28.15	4.41	67.55	11.08	0.01	1.2	3.5	9.52	6.94	27.55	0.491	44.47	61.33	78.33	92.59	115.32	1.97	2.72	3.48	4.11	5.12												
			A24(a)	30.72	25.12	5.6	64.97	11.46	0.01	1.2	3.5	9.52	7.64	28.62	0.484	43.34	59.85	76.57	90.68	112.53	1.79	2.47	3.16	3.74	4.64												

t drain	Chai	nage	nt	a.)	i paved	open a.)	usness	nutes	.c		rage city in (·uu sec.	min.)	ntration	nt "C"	Rain		ensity " hour	i" in		Qu	antity (Q)= 10 C	C.iAm³	/sec.	th in m	ain m	Are	ea requ	ired for	Drain	in m²	Wi	dth requ	uired for	r drain in	۱ m
Description about	from	þ	Sub Catchment	Total Area (Ha.)	Area of bulitup and paved areas (Ha.)	Area of parks and open space, etc. (Ha.)	Weighted Imperviousness (%)	Inlet Time in minutes	Slope of terain	For terain	For Drain	Flow in Terain (min.)	Total time of concentration (min.)	Runoff Coeffiecent "C"	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year)		(For 10 Year)	(For 20 Year)	Existing Ave.width in m	Ave. Depth of drain	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)	(For 1 Year)	(For 2 Year)	(For 5 Year)	(For 10 Year)	(For 20 Year)
			Total	92.75							3.5									5.61	7.73	9.88	11.68	14.54												
			Total	323.6							3.5									19.57	26.92	34.29	40.38	50.64	6.5	1.9	5.6	7.7	9.8	11.5	14.5	2.9	4.0	5.2	6.1	7.6
K210	0	1700	A24(a)	120	102.26	17.74	66.87	11.18	0.02	1.5	1.8 15.7	4 5.56	32.48	0.509	39.81	55.20	70.98	84.62	103.73	6.76	9.37	12.05	14.37	17.61												
			Total	120							1.8									6.76	9.37	12.05	14.37	17.61	2.2	1.8	3.8	5.2	6.7	8.0	9.8	2.1	2.9	3.7	4.4	5.4
K209	2825	4500	A24(b)	22.9	18	4.9	63.23	11.71	0.01	1.2	2.5 16.6	6.94	35.32	0.51	37.62	52.31	67.50	80.82	98.27	1.22	1.69	2.18	2.61	3.17												
			A24(a)	29.5	10	19.5	38.64	15.29	0.01	1.2	2.5 16.6	5.56	37.51	0.41	36.13	50.34	65.12	78.20	94.53	1.22	1.69	2.19	2.63	3.18												
			Total	52.4							2.5									2.43	3.38	4.37	5.24	6.35												
			Total	496							2.5									28.76	39.68	50.71	59.99	74.61	8	2.1	11.5	15.9	20.3	24.0	29.8	5.5	7.6	9.7	11.4	14.2
K209	4500	6000	A25(a)	34.37	20	14.37	52	13.34	0.02	1.5	1.2 34.7	2 8.89	56.96	0.52	27.28	38.53	50.71	62.22	72.23	1.37	1.93	2.54	3.11	3.62												
			A25(b)	37.59	25	12.59	56.58	12.68	0.01	1.2	1.2 34.7	2 12.5	59.9	0.55	26.37	37.31	49.20	60.52	69.93	1.51	2.13	2.81	3.46	4												
			A19	60	51.45	8.55	67.16	11.14	0.02	1.5	1.2 34.7	2 11.11	56.97	0.59	27.27	38.52	50.70	62.21	72.22	2.67	3.78	4.97	6.1	7.08												
			Total	131.96							1.2									5.55	7.84	10.32	12.67	14.69												
			Total	627.96							1.2									34.3	47.51	61.03	72.66	89.3	10	1.4	28.6	39.6	50.9	60.6	74.4	20.4	28.3	36.3	43.3	53.2
K209	6000	8250	A26(a)	40.58	33.68	6.9	65.65	11.36	0.01	1.2	0.9 37.0	9.72	58.12	0.584	26.91	38.04	50.09	61.53	71.30	1.77	2.5	3.3	4.05	4.69												
			A26(b)	47.6	38.55	9.05	64.54	11.52	0.01	1.2	0.9 37.0	11.11	59.67	0.582	26.44	37.40	49.31	60.65	70.10	2.03	2.88	3.79	4.67	5.39												
			Total	88.18							0.9									3.8	5.38	7.09	8.72	10.08												
			Total	716.14							0.9									38.11	52.89	68.12	81.38	99.38	8.5	1.5	42.3	58.8	75.7	90.4	110.4	28.2	39.2	50.5	60.3	73.6

Table 4.3 Showing Check for Adequacy of Existing Culverts with measured Site Slopes - Koramangala Valley (K1)

SI.No.	Culvert No.	Chainage	Vent	Span Length	Vertical Clearance of the Culvert	Slope	(Di) (D- 0.1)	A= (B × Di)	U.S.D Area (Da)	A)/Da × 100	= (B+2Di)	= A / P	(u)	1/n) R ^{2/3} S ^{0.5}	A×V	total		Disc	charge (C	Q _{Reqd.)}			Re	mark	S		Requ	iired Wid	lth (B)	
S	Culv			Spar	Vertical of the	S	(Di) (A= (U.S.D	(Da <i>– ⊢</i>	WP =	Ë		V = (1/I	n N N	σ	1year	2year	5year	10year	20year	1year	2year	5year	10year 20vear	1year	2year	5year	10year	20year
	K103	(m)	No.	(B) m	(D) m	(S)	(D- 0.1) m	(m²)	(m²)	%	(m)	(m)		(m/s)	(Cumec)	(Cumec)	(Cumec)	(Cumec)	(Cumec)	(Cumec)	(Cumec)									
1	KMS7-C3	Airport	1	1.300	1.500	0.0060	1.400	1.820			4.100	0.444	0.030	1.502	2.735															
		Road, Palm Grove Road @ 1690	2	1.300	1.500	0.0060	1.400	1.820			4.100	0.444	0.030	1.502	2.735															
		@ 1690	3	1.300	1.500	0.0060	1.400	1.820			4.100	0.444	0.030	1.502	2.735															
				3.9			1.400	5.460	8.700	37.241				1.502		8.204	9.72	14.31	17.90	21.81	25.65	IA	IA	IA	IA IA	4.62	6.8	8.51	10.37	12.19
2	KMS7-C7	Old Race	1	2.200	1.200	0.0020	1.100	2.420			4.400	0.550	0.030	1.001	2.422															
		Coarse Road @	2	2.200	1.200	0.0020	1.100	2.420			4.400	0.550	0.030	1.001	2.422															
		2316	3	2.200	1.200	0.0020	1.100	2.420			4.400	0.550	0.030	1.001	2.422															
				6.6			1.100	7.260	9.520	23.739				1.001		7.265	12.21	17.57	22.48	27.41	32.22	IA	IA	IA	IA IA	11.09	15.96	20.43	24.9	29.27

(UnClean Condition) (with freeboard 100mm)

Table 4.4 Showing Check for Adequacy of Existing Culverts with measured Site Slopes - Tavarakere Valley (K2)

SI.No.	Culvert No.	Chainage	Vent	Span Length	Vertical Clearance of the Culvert	Slope	(Di) (D- 0.1)	A= (B x Di)	U.S.D Area (Da)	Da – A)/Da x 100	= (B+2Di)	= A / P	(u)	1) R ^{2/3} S ^{0.5}	= A x V	Q total		Disc	harge (Q	Reqd.)			Re	mark	S		Requ	ired Wid	th (B)	
S	Culv		-	Spar	Vertical of the	S	(Di)	A= (U.S.D	(Da – A	WP =	Ë.		V = (1/n) R	ð	σ	1year	2year	5year	10year	20year	1year	2year	5year	10year 20year	1year	2year	5year	10year	20year
	K200	(m)	No.	(B) m	(D) m	(S)	(D- 0.1) m	(m²)	(m²)	%	(m)	(m)		(m/s)	(Cumec)	(Cumec)	(Cumec)	(Cumec)	(Cumec)	(Cumec)	(Cumec)									
1	KMC2-C7	Mosque Road,	1	4.000	1.000	0.0080	0.900	3.600			5.800	0.621	0.033	1.972	7.100															
		Bismillaha Nagar @2015		4.000			0.900	3.600	7.18	49.86				1.972		7.100	17.40	23.95	30.51	35.96	45.04	IA	IA	IA	IA IA	9.80	13.49	17.19	20.26	25.38
2	KMC2-C17	Maruthi Nagar main road, New	1	2.340	1.300	0.0030	1.200	2.808			4.740	0.592	0.020	1.932	5.424															
		extension, madivala	2	2.680	1.300	0.0030	1.200	3.216			5.080	0.633	0.020	2.019	6.494															
		@3225		5.020			1.200	6.024	14.28	57.82				2.019		11.918	22.37	30.92	39.60	46.98	58.13	IA	IA	IA	IA IA	9.23	12.76	16.34	19.39	23.99
	K204																													
3	KM2S4-C2	BTM Layout /	1	0.900	-	0.0100	-	0.636			2.829	0.225	0.011	3.363	2.140												Diame	eter of th	e Pipe	
		Ring Road @ 214	3	2.7				1.909	5.71	66.56				3.363		6.421	3.16	4.38	5.62	6.68	8.23	AD	AD	AD	IA IA	0.63	0.74	0.84	0.92	1.02
4	KM2S4-C3	35 th Main Road, BTM	1	0.900	-	0.0030	-	0.636			2.829	0.225	0.011	1.842	1.172												Diame	eter of th	e Pipe	
		Layout @ 260	3	2.7				1.909	4.05	52.86				1.842		3.517	3.48	4.81	6.18	7.34	9.05	AD	IA	IA	IA IA	0.90	1.05	1.19	1.30	1.44

(UnClean Condition) (with freeboard 100mm)

Culvert Analysis - Koramangala Valley

SI.No.	Culvert No.	Chainage	/ent	l Length	Clearance Culvert	Slope	(D- 0.1)	(B × Di)	Area (Da)	A)/Da x 100	(B+2Di)	= A / P	(u)	/n) R ^{2/3} S ^{0.5}	A×V	total		Disc	harge (Q	Reqd.)			Re	mark	s		Requ	ired Wid	th (B)	
S	Culv			Span	Vertical (of the	S	(Di) (D	A= (U.S.D	(Da – <i>P</i>	WP =	Ë		V = (1/1	ð	σ	1 year	2year	5year	10year	20year	1 year	2year	5year	10year 20year	1 year	2year	5year	10year	20year
к	(200	(m)	No.	(B) m	(D) m	(S)	(D- 0.1) m	(m²)	(m²)	%	(m)	(m)		(m/s)	(Cumec)	(Cumec)	(Cumec)	(Cumec)	(Cumec)	(Cumec)	(Cumec)									
5 KM2	2S4-C4	38 th Main Road, BTM	1	0.900	-	0.0050	-	0.636			2.829	0.225	0.011	2.378	1.513												Diame	eter of th	e Pipe	
		Layout @ 410	3	2.7				1.909	3.18	39.96				2.378		4.540	4.43	6.13	7.86	9.35	11.52	AD	IA	IA	IA IA	0.89	1.05	1.18	1.29	1.43
к	(206																													
6 KM2	2S2-C5	Bapujinagar	1	4.100	1.200	0.0028	1.100	4.510			6.300	0.716	0.030	1.412	6.366															
		@1119		4.100			1.100	4.510	13.47	66.52				1.412		6.366	3.47	4.81	6.17	7.33	9.04	AD	AD	AD	IA IA	2.24	3.10	3.97	4.72	5.82

CHAPTER - 5

ENVIRONMENTAL AND SOCIAL IMPACT

5.1 INTRODUCTION:

This chapter provides a strategic framework to ensure that existing storm drainage system in Bangalore is managed in a reliable, affordable, sustainable and environmentally friendly manner, which is most essential for success of any project. But from the existing management practices followed by the stakeholders and also with the prevailing site conditions, it appears that, along with the resources required to achieve the recommended targets, strategies and actions, they also needs to adopt best storm drain management practices, improvised construction and construction supervision techniques, strengthened organisational setup, major legislative changes, coordination with other stakeholders, public awareness campaigns including their participation to minimise the adverse implications on storm drain functionality and storm drain management practice in the city.

5.2 ENVIRONMENTAL CONDITIONS:

Open parks, major waterways and water bodies that exists in a city like Bangalore can be a significant amenity for flood protection. But in recent times, due to lack of planning and rapid changes in the landuse, these amenities have been largely ignored to a great extent by various stakeholders, service providers and the public in general. In the recent history, there has been no comprehension of the need to provide for storm water drainage system to service urban development beyond the sub-divisional level of tertiary drains. As a consequence, the primary and secondary drainage systems in the core (BMP) administered area have developed on an adhoc basis and now they have reached a saturation level and not in a position to provide security to the low lying areas during most needed situations. Further, there are many evidence that in areas outside the BMP administered region, the development authorities do not enforce and adopt even rudimentary practices for planning, construction and maintenance of primary and secondary drains and also they lack of resources and technical expertise to adopt best storm drain management practices. Significantly, what is seen over a period of time is that, number of lakes that were existing in BMRDA area have been filled up and converted into residential layouts. These lake areas otherwise would have acted as flood buffer zone. The tank beds, and its adjoining areas being the lowest point in the valley, even for small intensity of rainfall they are always prone for flooding, to prevent flooding in such areas. It requires, construction of new drains or expensive mechanical means. Therefore inorder to avert such expensive recurring problems. At this juncture, it is very much essential to create awareness among public, public representatives and all concerned about the consequences of encroaching tank areas. Restoration of tanks areas need to be taken on priority, which intern reduce the runoff and flooding problems in some of the adjoining low lying areas to a certain extent.

Koramangala valley is one such valley which suffers from all the above reasons. As mentioned earlier in the Chapter 2, storm drains in Koramangala valley flows through dense residential and commercial areas of the city. Since the drain is flowing through dense residential and commercial areas in the initial reaches, the natural coarse of the drain is altered at many places due to encroachments and also inappropriate planning by the landuse planners. Further, the carrying capacity is also drastically reduced due to dumping of construction debris, municipal solid wastes and also discharging raw sewage into the drains by the commercial establishments like restaurants, lodges, marriage halls, slum areas etc. thereby distracting the visual aesthetic amenity of waterway, causing siltation problems, inconvenience to the surrounding localities and threatening the health aspects of the communities residing in the close proximity of the waterway.

The main valley is silted up and blocked with solid wastes and utility crossings in the upper reaches and is plagued by siltation and sewage disposal in the middle reaches and encroachment and misuse in lower reaches. The end result is environmentally most polluting, flooding and nuisance value being high.

Although in many drainage basins, under ground sewerage system has been provided, there are still large quantities of raw and partially treated sewage flowing in the urban drains and waterways. This is caused by a combination of wastes discharged from unsewered premises, lateral / sub main sewers not connected to the trunk sewers, and effluent from trunk sewers which are under capacitated due

to siltation or due to increased sewage from higher than planned development densities. Koramangala was formed by BDA in the early eighties and has grown very rapidly since then. It is a major link between the prestigious software parks at Whitefield and the Electronic city. It is the centre of the axis of Software Belt. Hence the land value in Koramangala has shot up very high in recent years and development is very rapid. The areas adjoining Koramangala are Ejipura and Srinivagalu. These two areas are relatively old hamlet areas now becoming part of the urban development. But unfortunately both these areas are not covered with sewerage system. And all the waste generated from these localities are being discharged into storm drains.

Further, the drainage channel flows through dense commercial areas, wherein large numbers of shops and public toilet blocks have been constructed over the drain. Even though the sewer lines exists, the sewer out lets from the public toilets are not connected to the sewerage system and they are discharging raw sewage directly into storm drains and also due to lack of timely maintenance of chocked sewer pipelines, manholes, under capacity sewer pipelines, and lack of sewer connectivity, raw sewage is being allowed to enter into storm drain thereby distracting the visual aesthetic amenity of waterway, making place favorable for mosquito breading, causing substantial inconvenience to the surrounding locality resident, pedestrians and vehicular movement and also the slaughter houses located near the drains are also threatening the health aspects of the communities residing close to the waterway.

Since the topography of the terrain is sloping towards the drain and also due to improper solid waste collection and conveyance arrangement all the solid waste generated from the commercial establishments and the greasy liquid waste from service stations, find their way into the storm drain, further all the floating materials gets clogged with the utility lines laid across storm drains and culverts locations obstructing free flow of water and causing localized flooding problems and intern pose substantial damage to both life and property.

Due to lack of sediment erosion control measures and devices, large quantity of silt is being accumulated inside the drain thereby causing siltation, ponding of water and intern making places favorable for mosquito breading. The more extensive tertiary drains that exists are the key elements of the urban drainage system, but due to deficiencies in designs and maintenance practice, the existing tertiary drains are not serving upto the intended level of service during most needed hour of service.

Further down the stream near the receiving water body, new layouts that are formed are recently developed. But since the land value is very high, widening of drains is restricted and also the existing tertiary drains, due to deficiencies in design and maintenance practices they are not functioning upto the intended level of services during large storms and causing localised flooding problems.

Further, another significant cause of frequent flooding of low-lying areas is due to large accumulation of sediments and vegetal growth that reduce the carrying capacity of the drains. Further, improper solid waste collection and conveyance system and lack of understanding the impact of casual litter disposal inside the drains are significant factors contributing to the high waste volumes found in drains. Similarly, erosion control practices in construction sites, public parklands, private gardens and on the medians and verges of roads are not sufficient to control large silt loads reaching the main drains. These factors, combined with infrequent clearance of drains by concerned authorities, occasionally lead to unsanitary conditions in drains and further aggregate the already aggravated situation.

5.2.1 Relationships between Solid Waste and Drainage

Until recent times, the relationship between solid waste materials and drainage system and its impact on the environmental attributes was not considered to be significant due to various reasons, even though the responsibility for both drainage and solid waste management in the core area lies with BMP and outer periphery areas with CMC/TMC.

As observed during reconnaissance survey, disposal of bio degradable and non degradable material dumps into the drains were of a common practice all along the drain and intern factors that were influenced to affect the functionality of the system were also noted and few factors that were noted are as explained in brief here under,

The disposals of house hold garbage, street sweepings and construction debris into drains near Akkipete, B.V.K. Iyengar Road, Avenue Road, K.R. Market, Bamboo Bazar, Kalasipalya, J.C. Road, Sudhamanagar, Journalist colony, Sampangiramnagar, Siddapura, Wilson garden and L.R. Nagar areas in Koramangala main valley and Krishnappa garden, Bismillanagar, Tavarekere, Bajajinagar, Bapujinagar, Guruppanapalya, Madivala and Someshwara colony in Tavarekere valley is affecting free flow of water, reducing the aesthetic appearance, reducing the quality of environmental attributes in that region. Apart from affecting the flow, solid wastes have particular impact on the smaller tertiary drains, often obstructing flow completely, and causing short term localized flooding that can be especially dangerous to both pedestrians and vehicular movement. Further to improve the situation in that region improvised method of solid waste collection and conveyance system, community awareness campaigns in these regions is most essential.

5.2.2 Conflicts between Sewers and Drains:

At present there are some trunk sewers laid within drainage channels. Problems that arise from sewers in drainage channels are numerous and include:

- · capacity reduction of drains due to manholes;
- restrictions on channel augmentation options;
- ready opportunities to relieve excess sewage into channels;
- need for parallel programming and close coordination, where rehabilitation of either service is proposed;
- difficult access for sewer maintenance;
- · lack of access to sewers under lined inverts and cross drainage culverts
- · potential damage to the system from drain assets; and
- poor construction due to difficult access and flow diversion problems.

Benefits are few and include:

· no need for separate sewer easement; and

• relatively low excavation cost due to shallow depth.

All the above problems mentioned outweigh the benefits accrued in the Koramangala valley and therefore urgent efforts are required to cleanse the entire system.

5.2.3 Impacts of Poor Storm Water Drainage System:

The importance of adequate storm water and wastewater drainage, in tandem with sufficient water supply, cannot be over emphasised, if full health benefits from provision of services are to be derived. Inadequate drainage causes inconvenience and losses to both life and property varying in nature ranging from:

- Inundation of houses and establishments on the floodplains, caused by large scale "valley" flooding from overflow of primary and secondary drains.
- Iocal area inundation and water stagnation in residential areas, caused by "local" drainage deficiencies and run-off from adjacent local catchments as in K.R. Market area, Sudhamanagar, Journalist colony, Arekempanahalli, Wilson garden, Pothalappa Garden, Koramangala, Austin town, Ejipura and S.T. Bed area in Koramangala Main Valley.

Bismillahanagar, Krishnappa Garden, LIC Colony, Guruppanapalya, Dollars Colony, and Madivala in Tavarekere valley.

- •Causes extensive damage to infrastructure works and intern reduces the aesthetic appearance of the city and reduces the land value cost adjacent to drains etc.
- •Having high solid waste and sewage concentrations, the flood waters which inundate dwellings and their curtilages create particularly very objectionable conditions in Bangalore.
- •The frequency and duration of flooding is relatively high in some of the locations, occurring usually during the south west monsoon period. Whilst valley flooding occurs several times per year in down stream areas. Under these latter

conditions, poor drainage causes water stagnation and creates the surrounding area favorable for mosquitoes breeding and intern leads to unsanitary conditions. Even the water quality in some of the borewells that are dug adjacent to storm drains are polluted.

•Out of the 360 officially recognized slums in Bangalore, only 30 percent have underground sewerage services. Hence, the major portion of the wastewater generated from such slums will be discharged via the storm water system causing very unhygienic conditions.

5.3 ENVIRONMENTAL MANAGEMENT PLAN:

The proposed activities arising from this chapter are strategic in nature, and as such, the detailed investigations required have not been performed. Consequently the environmental assessment of the proposed activities addresses generic environmental impacts and mitigation measures only.

Recommendations:

- >Prepare a comprehensive management plan which is acceptable and affordable by the community.
- >Prepare a risk assessment plan and risk management plan.
- Prepare a construction and maintenance schedule to ensure effective functionality of the system.
- >Implement an effective, improvised solid waste collection and conveyance system.
- >Ground water quality analysis to be carried out periodically and the analysed results should be compared with past records and accordingly action to be framed.
- Large scale green belt development activity to be taken up and encouraged all along the channel and also in open lands to improve the aesthetic value of the city environs.

>Prepare a strategic plan for development of land in low lying areas.

- >Municipal authorities should be more vigilant on the contractors responsible for disposal of solid wastes generated from the market yards, slums and densely populated areas.
- There should be stringent penalty on commercial establishments, dyeing industries, hospitals lying in the catchment area, that are disposing off their liquid/solid waste in the valley in an inappropriate manner.
- >There should be a ban on the construction of public toilets on the banks of the waterway.
- Service station / garages should not be allowed to dispose the greasy effluent into the drain.
- There should be a strict vigil on slaughter houses and dyeing industries, which are discharging their liquid waste directly into drains and they should be instructed to dispose of their waste in a secured manner.
- Horticulture gardens and nurseries situated along the banks of the valleys should be cordoned off from the valley and should dispose the vegetative waste separately outside as a landfill and not to discard in the drain.
- >There should be no UGD inlet into the drain from slums and other residential areas.
- >Silt traps and silt barriers must be constructed along the drain at strategic locations to reduce silt load at downstream of the valley.
- >Municipal authorities should encourage public and private sector enterprises for usage of recycled water and adopt rain water harvesting techniques in open lands etc.

- >Create awareness among the public, regarding importance of the system functionality.
- >Detention ponds for recharging ground water and to minimise fine silt transportation should be constructed along the strategic vantage locations in the valley. Few locations where such ponds could be created/constructed apart from existing parks maintained by BMP are as listed below and the same is depicted in Figure 5.1.

Table 5.1 List of Locations For Construction of Detention Ponds

- 1. Victoria Hospital Area
- 2.Lalbagh Botanical Garden
- **3.NIMHANS Hospital Campus**
- 4. Dharmaram College Campus
- 5.Christ College Grounds
- 6.St. Johns Hospital Campus
- 7. Reserved Forest Area, near Doresanipalya
- 8.K.S.R.P. Quarters, near Madivala
- 9.MICO Factory, near Hosur Road Koramangala
- 10.Bangalore Milk Dairy
- 11.MICO Factory, near Adugodi
- 12.National Dairy Research Institute, near Adugodi
- 13.K.S.R.T.C. Area, near Shanthinagar
- 14.AEC College, near Ejipura
- 15.Bangalore Military School, near Velleara Jn.
- 16.Cubbon Park Area
- 17.Central College Campus, near K.R. Circle
- 18.Maharanis College Campus
- 19.Bangalore Turf Club Area
- 20.Controller of Defence Accounts Office Premises, near Airport Road
- 21. Hindu Burial Ground, near Lang Ford Town
- 22.M.N. Krishna Rao Park, near Basavanagudi
- 23. Police Quarters, near Adugodi
- 24.Bangalore City Corporation Premises
- 25. Private Nursery's, near Siddapura

5.4 SOCIAL IMPACTS:

Baseline data together with data on social and environmental impact of flooding has been collected during reconnaissance survey to ascertain the level of service offered by the existing drainage system at various locations in the BMP, BDA and BMA administered areas.

The Baseline survey provided the following statistics on the incidence, nature and possible cause of flooding:

- •7% of the household in B.M.P. area, reported that they faced instances of flooding.
- 10% of households of lower socio-economic status reported that they had faced flooding in the past decade-instances of flooding had been more common in the central part of the city.
- •Of the house holds that had experienced flooding, 72% reported such occurrences in the last one year, 15% had experienced flooding in the year 1999, 7% during the period 1995 to 1998, while 2% reported that they had experienced flooding prior to 1995.
- •Of the households that had experienced flooding, a majority said that the effects had lasted for one to three days, while 3 % said they had extended beyond a week.
- •Two thirds of the households ascribed the reasons for flooding to blockages in the sewerage system, 12% to ingress of rain water into the house, while 11% said that it had been caused by a blocked drains or gutter.
- •Lower income households and those living in the slums were more vulnerable to flooding caused by blocked drains; and
- •All households reported damage to assets and loss of workdays on account of such flooding.

- •Few households from the conurbation and green belt areas reported that their houses had been flooded in the recent past, suggesting the high density of houses and lack of planned development have contributed to the problem of improper drainage in the corporation area.
- •Out of 360 officially recognized slum in Bangalore, only 30% have underground sewerage services. Hence, in the majority of slums wastewater must be discharged via. the storm water system, during flooding instances due to water stagnation, it provides a breeding ground for mosquitoes and leads to generally unsanitary conditions and health hazards.

Details on the areas affected, the frequency of flooding, the impacts and the cause of flooding would all be relevant for an effective management of the drainage system, but such records are not kept. But, during reconnaissance survey such information's were collected from public as first hand information and were considered during the evaluation of analysis results to improve the existing situation.

CHAPTER - 6

COST ESTIMATION

6.1 INTRODUCTION

All development projects shall aim to make the best use of available financial, physical, and institutional resources.

This is especially true for upgrading work, for which the available resources are usually limited in relation to the total need. It is therefore very much important to minimise the cost at which services are provided while ensuring that agreed minimum standards are achieved. In the mean while, it is also important to ensure that cost, both capital cost and recurrent are affordable to the organization and also as well as agreeable to all the beneficiaries.

6.2 COSTS:

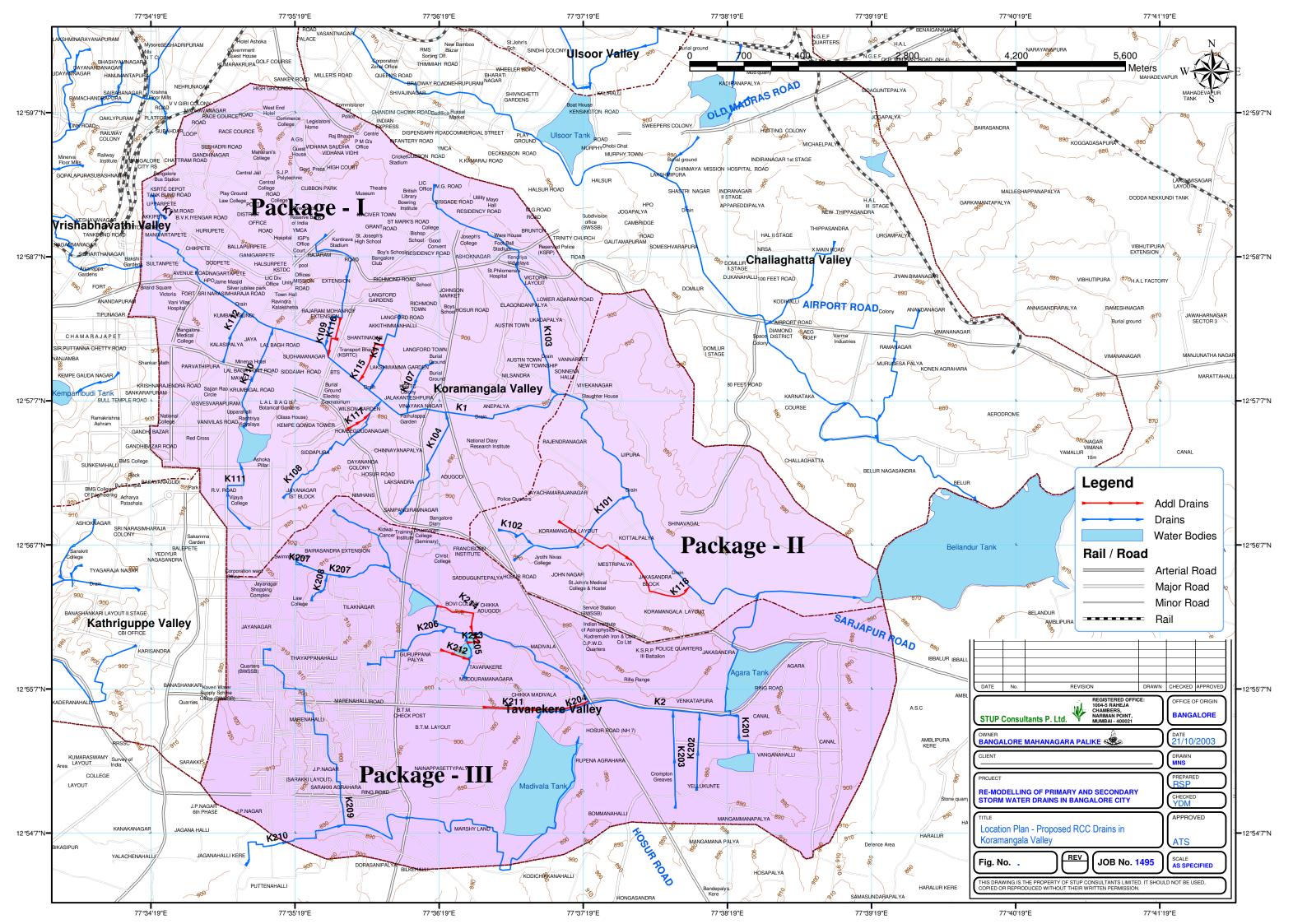
The costs considered when appraising remodeling proposals, fall into two basic categories, capital costs and recurrent costs.

Capital cost are the costs incurred at the beginning of the project between its inception and its completion on the ground. Further the capital cost include,

the cost of planning and designing the work,
construction costs,
supervision costs, and
overheads.

Recurrent costs are the cost incurred after execution of the project for its routine maintenance and operations.

6.3 COST ESTIMATE:


Based on the techno-economical proposals indicated to BMP in the feasibility report and further, after obtaining the concurrence for the acceptance of all the proposals, the works envisaged in the entire Koramangala Valley has been sliced into three packages, which are as follows,

Package – (K1VD-I) : Koramangala Main Valley - K100 (From Ch. 0.00 m. upto 6,600.00 m.) [From Majestic Area upto Infant Jesus Church, near Viveknagar]

Package – (K1VD-II) :Koramangala Main Valley - K100 (From Ch. 6,600.00 m. upto 12,000.00 m.) [From Infant Jesus Church, near Viveknagar upto Bellandur Tank]

Package – (K2VD-III):Tavarekere Valley - K200 (From Ch. 0.00 m. upto 7,625.00 m.) [From Bairasandra Extn. upto Bellandur Tank]

The works envisaged in Koramangala valley primary and secondary storm drains and also which are grouped under each package is as listed below in the Table 6.1 to Table 6.8. and the same is depicted in Figure 6.1.

TABLE 6.1Details of Primary and Secondary Storm Drains ofKoramangala Main Valley Considered for Remodeling in Package – (K1VD - I)

SI. No.	Drain ID	Name	Туре	Start	End	Length (Mts.)
Korama	ingala Ma	in Valley (K1):				
1	K100	Koramangala	Pri.	Near Upparpet Area	Infant Jesus Church near Viveknagar	6,600
2	K103	Austin Town	Sec.	M.G.Road	Neelasandra	3,400
3	K104	Laksandra	Sec.	Sampangiramnagar	Annepalya	1,700
4	K107	Lakshmanna Garden	Sec.	Langford Town	Jalakanteshwarapur	770
5	K108	Siddapura	Sec.	Jayanagar I ^{st.} Block	Wilson Garden	1,925
6	K109	R.R.M. Roy Extn.	Sec.	Kanteerava Stadium	Sudhamanagar	2,000
7	K110	Lalbagh	Sec.	Lalbagh tank	J.C.Road	625
8	K111	Jayanagar	Sec.	Jayanagar 3 rd Block	Lalbagh tank	950
9	K112	Kalasipalya	Sec.	Paravathipura	Kumbaragundi	715
10	K114	Akkithimanahalli	Sec.	DivyaSree Chamber	KSRTC Training Centre	1,100
				Total Length of F	Primary Drain	6,600
				Total Length of S	econdary Drains	13,185

(From Chainage 0.00 m. upto 6,600.00 m.)

TABLE 6.2Details of Culverts / Bridges constructed acrossPrimary and Secondary Storm Water Drains in Koramangala Main Valley
Considered for Remodeling in - Package - (K1VD - I)

Culvert No.	Chainage (m.)	Location	Remarks
Fown Seconda	ry Storm Drai	in (K103) :	
KMS-7 C3	1,690	Airport Road (Palm grove Road)	Ex. Culvert/Bridge considered for remodelling
KMS-7 C7	2,316	Old Race Course Road	Ex. Culvert/Bridge considered for remodelling
List of Culvert	s / Bridges C	onsidered for Providing Rehabilitation in Pac	kage – I (KVD – I)
	Impr	rovements to Existing Culverts / Bridges	
ngala Valley Pr	imary Storm	Drain (K100) :	
KMC - 5	3,030	2 nd Cross, Sudhamanagar	Provision of handrails / Parapet wall
	Fown Secondar KMS-7 C3 KMS-7 C7 List of Culverts	Culvert No. (m.) Fown Secondary Storm Drain KMS-7 C3 1,690 KMS-7 C7 2,316 List of Culverts / Bridges Colored Important Storm	Culvert No. (m.) Location Fown Secondary Storm Drain (K103) : Import Road (Palm grove Road) KMS-7 C3 1,690 Airport Road (Palm grove Road) KMS-7 C7 2,316 Old Race Course Road List of Culverts / Bridges Considered for Providing Rehabilitation in Pace Improvements to Existing Culverts / Bridges Improvements to Existing Culverts / Bridges Improvements to Existing Culverts / Bridges

Table6.3Details of New Drains Proposed for construction in
Koramangala Main ValleyPackage – (K1VD – I)

SI. No.	Drain ID	Name	Туре	Start	End	Length (Mts.)
Koram	angala M	ain Valley (K1):				
1	K115	Shanthi nagar	Sec.	Lakshmiamma Garden	KSRTC Training Centre	750
2	K116	RRM Roy	Sec.	Srinivas Colony near Bangalore Institute of Oncology	RRM Roy Extn.	400
3	K117	Wilson Garden	Sec.	Mari Gowda Road near Hombe Gowda nagar	Wilson Garden near Siddaiah Road	400
				Total Length	of New Drains	1,550

TABLE 6.4Details of Primary and Secondary Storm Drains of Koramangala Main
Valley Considered for Remodeling in Package – (K1VD - II)

SI. No.	Drain ID	Name	Туре	Start	End	Length (Mts.)
Korama	ingala Ma	iin Valley (K1):				
1	K100	Koramangala	Pri.	Infant Jesus Church near Viveknagar	Location near Bellandur Tank	5,400
2	K101	Koramangala layout (1)	Sec.	Hosur Road	Koramangala Slum	2,000
3	K102	Koramangala layout (2)	Sec.	Hosur Road	Jyothi Nivas College	300
4	K113	Rajendranagar	Sec.	Royal Parikrama Centre Near Koramanagala 8 th Block	Koramanagala Main Valley (Behind Akhila Karanataka Animal Rehab. Centre)	2,225
				Total Length of Pr	imary Drain	5,400
				Total Length of Se	condary Drains	4,525

(From Chainage 6,600.00 m. upto 12,000.00 m.)

Table6.5Details of New Drains Proposed for construction in
Koramangala Main ValleyPackage – (K1VD – II)

SI. No.	Drain ID	Name	Туре	Start	End	Length (Mts.)
Korama	ingala Ma	in Valley (K1):				
1.	K118	Koramangala Layout	Pri.	Koramangala 5 th Block, 5 th Cross	Koramangala 7 th Main Road	1,800
				Total Length of	New Drains	1,800

TABLE 6.6Details of Primary and Secondary Storm Drains ofTavarekere Valley Considered for Remodeling in Package – (K2VD - III)

(From Chainage 0.00 m. upto 7,625.00 m.)

SI. No.	Drain ID	Name	Туре	Start	End	Length (Mts.)
Tavarel	kere Valle	y (K2):				·
1	K200	Tavarekere Valley	Pri.	Bairasandra near NIMHANS Hospital	Location near Bellundur Tank	7,625
2	K201	Vanganahalli	Sec.	Vanganahalli	Near Agara Tank	1,350
3	K202	Yellukunte	Sec.	Yelukunte	Venkatapura	950
4	K203	H.S.R Layout	Sec.	Crompton Greaves	Outer Ring Road	1,200
5	K204	Madivala	Sec.	Near Madivala Tank	Hosur Road	705
6	K205	Tavarekere	Sec.	Mudduramanagar	Bismillahanagar	525
7	K206	Guruppanapalya	Sec.	Tayappanahalli	Bovi Colony	1,245
8	K207	Krishnappa Garden	Sec.	Bairasandra Extn.	Bannerghatta Road	1,225
9	K208	Canara Bank Colony/ Law College	Sec.	Tilaknagar	Krishnappa Garden	425
10	K209	J. P. Nagar	Sec.	Jayanagar 4 th Block	Madivala Tank	8,250
11	K210	Puttenahalli	Sec.	J.P.Nagar, Puttenahalli	Sarakki Layout	1,700
				Total Length of Prima	ry Drain	7,625
				Total Length of Second	lary Drains	17,575

TABLE 6.7 Details of Culverts / Bridges Constructed across Primary and Secondary Storm Water Drains in Tavarekere Valley Considered, for Remodeling in Package – (K2VD – III)

SI. No.	Culvert No.	Chainage (m.)	Location	Remarks
Tavarek	ere Valley Primar	y Storm Drain	n (K200) :	
1	KMC-2 C7	2015	Bismillahanagar	Ex. Culvert/Bridge considered for remodelling
2	KMC-2 C17	3225	Maruthinagar, Near Madivala	Ex. Culvert/Bridge considered for remodelling
Madival	a Secondary Stor	m Drain (K20	4):	
1	KM2S4- C1	0	Near Madivala	Ex. Culvert/Bridge considered for remodelling
2	KM2S4- C2	214	Near B.T.M. Layout	Ex. Culvert/Bridge considered for remodelling
3	KM2S4- C3	260	35 th Main Road, Near B.T.M. Layout	Ex. Culvert/Bridge considered for remodelling
4	KM2S4- C4	410	38 th Main Road, Near B.T.M. Layout	Ex. Culvert/Bridge considered for remodelling
Tavareke	ere Secondary Sto	orm Drain (K	205) :	
1	KM2S3- C2	175	Tavarekere	Ex. Culvert/Bridge considered for remodelling
Guruppa	anapalya Second	ary Storm Dra	ain (K206) :	
1	KM2S2- C5	1119	Near Bapujinagar	Ex. Culvert/Bridge considered for remodelling
	List of Cu	Iverts / Brid	dges Considered for Providing F	Rehabilitation
		Improvei	ments to Existing Culverts / Bridges	6
Tavareke	ere Valley Primary	y Storm Drain	(K200):	
1	KMC2-C8	2075	Bismillahanagar	Provision of handrails / Parapet wall
2	KMC2-C9	2109	Bismillahanagar	Provision of handrails / Parapet wall
3	KMC2-C10	2126	Bismillahanagar	Provision of handrails / Parapet wall
4	KMC2-C11	2163	Bismillahanagar	Provision of handrails / Parapet wall
5	KMC2-C12	2188	Bismillahanagar	Provision of handrails / Parapet wall
Guruppa	anapalya Second	ary Storm Dra	ain (K206) :	
1	KM2S2- C2	525	Near Bapujinagar	Provision of handrails / Parapet wall
2	KM2S2- C3	-	Near Bapujinagar	Provision of handrails / Parapet wall
			1	1

TABLE 6.8 Details of New Drains Proposed for Construction in Tavarekere Valley Package - (K2VD - III)

SI. No.	Drain ID	Name	Туре	Start	End	Length (Mts.)
Tavarek	ere Valle	y (K2):				
1	K211	BTM Layout	Sec.	BTM Layout 1 st stage	Central Silk Board Staff Qtrs.	1,000
2	K212	Guruppanapalya -1	Sec.	Guruppanapalya	Maruthi HBS Layout	100
3	K213	Guruppanapalya - 2	Sec.	Maruthi HBS Layout	Tavarekere Main Road	500
4	K214	Bharathi nagar	Sec.	Tank Bund Road near St.Gaspar Bhavan	Brindavan Nagar	700
				Total Length of New	v Drains	2,300

Detailed cost estimate has been worked out for improving the carrying capacity and rehabilitating the existing system, construction of new drains and bridges/culverts, improving the functionality and capacity of tertiary drains and other allied works to minimizing the flooding problems in low lying areas and the same is also indicated in Figure 6.1.

Wherein, rehabilitation work includes drain wall reconstruction, cavity filling, restoration of eroded stones, providing pointing and where as carrying capacity improvement work includes desilting, widening, deepening, plastering, wall raising, construction of water recharging structures and providing bed protection.

For ease of assessment, carrying capacity improvement works and rehabilitation works have been identified and assessed for every kilometer length and accordingly cost estimates have been prepared and given in Volume IV of this report. Further for better understanding work summary statements and strip plans have been prepared and enclosed in this chapter.

For assessment of cost, detailed hydraulic design, structural designs, quantity estimation and cost estimation as per current schedule of rates have been carried out

A lumpsum amount provision for temporary shifting of utilities, traffic diversion, providing improvement works like green belt development along side of storm drains etc., are made in the estimate.

Apart from the cost incurred for remodeling of storm drains, some of the costs which are not considered in the estimate and which are envisaged to be a large amount are,

- Procurement of land / acquisition cost
- •Rehabilitation cost for distracted property owners
- •Removal of structures & Disposal of debris
- •Permanent shifting of service lines by various agencies
- Sewerage system improvement works
- •Restoration of roads and cross drainages after completion of the works
- •Cost incurred for asset management
- •Maintenance of drains, etc.

Table 6.9 & 6.10 indicates carrying capacity improvement works & rehabilitation works for Primary storm drain in Koramangala Main Valley.

Table 6.11 & 6.12 indicates carrying capacity improvement works & rehabilitation works for Secondary storm drains in Koramangala Main Valley.

Table 6.13 & 6.14 indicates carrying capacity improvement works & rehabilitation works for Primary storm drain in Tavarekere Valley.

Table 6.15 & 6.16 indicates carrying capacity improvement works & rehabilitation works for Secondary storm drains in Tavarekere Valley.

Table 6.17 Indicates abstract of cost for remodelling of existing culverts / bridges and also construction of new bridges in Koramangala Valley.

Table 6.18 Indicates abstract of cost for construction of new drains / improving the existing tertiary drains in Koramangala Valley has been made in the estimate.

6.4 Work Programme for Koramangala Valley:

The works proposed for remodeling of storm drains in Koramangala Valley shall be taken up in a phased manner simultaneously in all the packages. Since, some of the critical issues like coordination from other agencies in several instances, community participation, acquisition of land from both government & public, shifting of major utilities, traffic diversion at several places etc., are envisaged in all the packages.

After having several discussion with senior officials of BMP and other stake holders and beneficiaries of the project. Work programme with a broader contest has been formulated keeping in view the availability of the resources, minimum distraction to the adjoining properties, to cause less inconvenience to the public, considering the environmental aspects etc., also for smooth and successful implementation of the project, which is as narrated below,

							Existir	ng Storm Drain – Carrying Capa	city Improve	ments Works		
61. Io. –	Chaina	age (m.)	Loca	ation		Drain Widening	D	rain Desilting & Deepening		Drain Wall Raising		Bed Protection
	From	То	From	То	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks
	2	3	4	5	6	8	9	11	12	14	15	17
100) – Kora	-	-	nary Storm Dr	rain							
1	0	1,000	Old Taragupet Main Road	A.S. Achar Street / BVK Iyengar Road			a) 0 - 1000	 a) This reach of drain is almost covered as it needs to be opened at regular interval for desilting and it has to be desilted for about 0.4 m depth. Further, after desilting, steel grating needs to be installed at regular intervals. 		-	a) 0 - 1000	 a) After desilting drain bed need to provided for full length & width.
					a) E00 1000	h) Dicht Side						
						b) Right <u>Side</u> From Sowrastrapete Road upto BVK Iyengar Road.						
						Existing covered drain to be opened and widened on right hand side. Further, new SSM wall of required height to be constructed and again covered with new RCC slab of 275 mm thick. Existing width 1.6 m widened to 4.0 m and height 1.2 m.						
2	1,000	2,000	A.S. Achar Street / BVK Iyengar Road	3rd Cross, New Bamboo Bazar Road	a) 1000 - 1500	a) <u>Right Side</u>	a) 1000 - 2000					
						From BVK Iyengar Road upto Avenue Road. Existing covered drain to be opened and widened on Right hand side and small structure on left hand side.	b) 1800 - 2000	 a) Existing drain needs to be desilted for about 0.5 m depth. b) After desilting drain bed to be deepened by about 0.5 m from N.R. Road upto 3rd cross New Bamboo Bazar Road 	-	-	a) 1000 - 2000	 a) After desilting drain bed needs to provided for full length & width.
						Further, new RCC wall to be constructed and again covered with new RCC slab of 0.3 m thick upto Ch. 1400 m and also steel gratings to be provided at regular interval.		Bazai nuau				
						Existing width: 2.5 m widened to 6.5 m & height 1.4 m						
						Left Side From N.R. Road upto 3rd cross, New Bamboo Bazar Road. Existing drain needs to be widened on Left hand side. Existing width : 4.5 m widened to 8.0 m & height 1.8 m						
3	2,000	3,000	3rd Cross, New Bamboo Bazar Road	2nd Cross Road, Sudhama- nagar	a) 2000 - 2275	<u>a) Left Side</u>	a) 2000 - 3000	a) Existing drains needs to be desilted for about 0.4 m	a) 2000 - 2325	Right Side	a) 2000 - 2325	
				nayai		3rd Cross, New Bamboo Bazar Road upto 1st Main J.C. Road				 a) After providing rehabili-tation to the existing drain wall, it has to be raised by about 0.6 m 		a) After desilting bed protection reach provided for full length & width

Table - 6	.9	Schedule For Improving the	e Carrying Capacity	of Existing Primary Storm	n Drains in Koramangala Main Valle	ey (K100
					· · · · · · · · · · · · · · · · · · ·	

00)

	Ohain		Location		Existing Storm Drain – Carrying Capacity Improvements Works							
SI. No.			Location		Drain Widening		Drain Desilting & Deepening		Drain Wall Raising		Bed Protection	
110.	From	То	From	То	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks
1	2	3	4	5	6	8	9	11	12	14	15	17
						Existing width 5.5 m widen-ed to 10.0 m to height 2.4 m	b) 2000 - 2325	 After desilting, drain bed to be deepened by about 0.5 m from 3rd Cross, New Bamboo Bazar Road upto 1st Main, J.C. Road 		From 3rd Cross, New Bamboo Bazar Road upto 1st Main J.C. Road	b) 2425 - 3000	b) After desilting bed protection needs to be provided for full length & width
4	3,000	4,000	2nd Cross Road, Sudhama- nagar	KSRTC Bus Depot near K.H. Double Road	a) 3275 - 3475	a) <u>Right Side</u> 8th Cross, Annipura upto 10th Cross, Annipura. Existing drain needs to be widened on Right hand side. Existing width 8.5 m widened to 12.5 m & ht. 2.4 m	a) 3000 - 4000	Existing drain needs to be desilted a) for about 0.4 m	-	-	a) 3000 - 4000	a) After desilting bed protection needs to be provided for full length & width.
5	4,000	5,000	KSRTC Bus Depot near K.H. Double Road	Bannerghata Road near Jalakantesh- warapura	-	-	a) 4000 - 5000	Existing drain needs to be desilted for about 0.4 m. Existing width : 12.5 m	-	-	a) 4000 - 4950	a) After desilting bed protection needs to be provided for full length & width.
6	5,000	6,000	Bannerghata Road near Jalakanteshwa rapura	Muthu - Mariamma Temple near L.R. Nagar foot bridge location.	a) 5200 - 6000	a) Both Side From Hosur Road upto Muttumariamma Temple. Existing drain is in natural condition and it needs to be widened on both sides & embankment to be made with imported earth. Further, between Ch. 5650 - 5850. Slightly Drain alignment needs to be altered. Stone revetment is to be provided on both sides for full		Existing drain need to be desilted for about 0.4 m	-	-	a) 5000 - 6000	a) After desilting bed protection needs to be provided for full length & width.
7	6,000	7,000	Muthu - Mariamma Temple near L.R. Nagar foot bridge location	Viveknagar Bridge Location	a) 6000 - 6575	length. Existing width 14.0 m widened to 22.5 m & ht. 3.0 m	a) 6000 - 7000	Existing drain needs to be desilted for about 0.5 m		<u>Right Side</u> From a location where, Austin Town drain joins primary drains upto Viveknagar bridge.		a) After desilt-ing drain bed protection needs to be for full length & width.

			Location				Existin	g Storm Drain – Carrying Capac	city Improve	ments Works		
SI. No.	Chaina	age (m.)			Drain Widening		Dr	rain Desilting & Deepening		Drain Wall Raising	Bed Protection	
NO	From	То	From	То	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks
1	2	3	4	5	6	8	9	11	12	14	15	17
						Existing width 22.5 m & ht. 3.0 m.				After providing rehabilitation works to the existing drain wall, it has to be raised by about 0.5 m		
						Left Side From a location where Austin town drain joins primary drain upto Viveknagar bridge location. Existing drain needs to be widened and new wall to be constructed on left hand side.						
						Existing widith: 12 m widened to 24.0 m & ht. 3.0 m						
8	7,000	8,000	Viveknagar Bridge Location	National Games Village		Both Side	7000 - 8000	Existing drain needs to be desilted for about 0.4 m	a) 7000 - 7200	<u>Right Side</u>	a) 7000 - 7850	After desilting drain bed needs to be provided for full length & width.
			Location			Near Ejipura Main Road. (BMP Hot Mix Plant)				Near Ejipura Main Road. After providing rehabilitation to existing drain wall. Existing drain wall ht. Has to be raised by about 0.5 m.		
						Existing drain needs to be widened on both sides and new wall to be built on both sides.).				· · · · · · · · · · · · · · · · · · ·		
						Existing width: 7.5 m widened to 16 m & height 3.0 m						
					b) 7200 - 7850	Left Side			b) 7200 - 7850	Left Side		
						Near Indira Gandhi Slum Area				Near Indira Gandhi Slum area.		
						Existing drain needs to be widened on Left hand side.				After providing rehabilitation to existing drain wall, it has to be raised by about 0.6 m		
						Existing width 8 m to 16 m & ht. 3.0 m						
9	8,000	9,000	National Games Village	Koramangala 1st Cross Road	a) 8200 - 8400	Both Side	a) 8000 - 9000	Existing drain needs to be desilted by about 0.4 m	-	-		After desilting drain bed need to b provided for full length & width.
				Tidau		Behind Koramangala BMTC Bus Depot upto Ejipura Church Road bridge location. Existing drain alignment needs to be slightly altered & widened and new wall needs to be constructed on both side. Existing width: 7.5 m widened to 18 m ht. 2.6 m.						
					b) 8425 - 8500	Right Side Near Ejipura Church Road bridge location Existing drain is in natural conditon on Right hand side. It needs to be widened and stone revetment needs to be provided. Existing width: 10.5 widened to 18 m ht. 3.0 m						
					c) 8500 - 8700	Both Sides At Ashwini layout near Inner Ring Road. Existing drain is in natural conditon and embankment needs to be made with imported earth and stone revetment provided.						
						Existing width: 9.5 m widened to 18 m ht. 3.0 m						

	Chainage (m						Existing	g Storm Drain – Carrying Capa	city Improve	ments Works		
SI. No.	Chaina	age (m.)	Loca	ation		Drain Widening	Dra	ain Desilting & Deepening		Drain Wall Raising		Bed Protection
140.	From	То	From	То	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks
1	2	3	4	5	6	8	9	11	12	14	15	17
					e) 8825 - 9000	 d) Left Side Near Inner Ring Road Bridge location. Existing drain is in natural condition and it needs to be widened and new wall needs to be constructed on left hand side. Existing width: 11.5 m widened to 18 m ht. 2.6 m e) Left Side Near Koramangala Ist Cross Road. Existing drain needs to be widened and new wall needs to be constructed on left hand side. Existing drain needs to be widened and new wall needs to be constructed on left hand side. Existing width: 10 m widened to 18 m ht. 2.6 m						
10	9,000	10,000	Koramangala 1st Block, 1st Cross Road		a) 9600 - 9650	a) <u>Both Sides</u> Near SEVA Gangothri Associates. Existing drain alignment needs to be slightly altered and widened and new wall to be built on both sides. Existing width: 11 m widened to 14 m height 2.6 m.	a) 9000-10000	Existing drain needs to be desilted by 0.4 m	-	-		After desilting drain bed needs to be provided for full length & width.
11	10,000	12,000	Koramangala Ist Block, 8th Cross Road	Location near Bellandur Tank	a)10,100-12,000	a) <u>Both Side</u> Existing drain reach is in natural condition and it has to be widened and stone revetment provided. Further, service road has to be formed on either side and guard stone at every 10 m interval to be provided. Existing width: 14 m widened to 24 m ht. 2.4 m		Existing drain needs to be desilted by about 0.6 m	-	-	a) 10,000 - 11,000	After desilting drain bed needs to be provided for full length & width.

SI. No. 1 K10	Chaina	ige (m.)	Loc	ation				Existing Storm Drain – Rehabilitation Works		
1 0.		9- (,				Drain Wall Reconstruction		Utility		
	From	То	From	То	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	
1	2	3	4	5	6	8	9	11	12	
K10	0 – Kora	mangala	a Valley Prima	ry Storm Drain	n					
1	0	1,000	Old Taragupet Main Road	A.S. Achar Street / BVK Iyengar Road	-	-	a) 500 - 1000	Right Side From Sowrastrapete Road upto BVK lyengar Road. After desilting, cavities to be filled, eroded stones to be restored and pointiong to be done for existing wall on Right hand side for a ht. of about 1.2 m.	-	
2	1,000	2,000	A.S. Achar Street / BVK Iyengar Road	3rd Cross, New Bamboo Bazar Road	-	-	a) 1000 - 1500 b) 1500 - 1800 c) 1800 - 2000	 a) Left Side From BVK Iyengar Road upto Avenue Road. After desilting, cavities to be filled, eroded stones to be restored and pointing to be done for existing wall in left hand side for a ht. of about 1.4 m b) Both Sides Near K.R. Market upto Avenue Road. After desilting, cavities to be filled, eroded stones to be restored and pointing to be provided for existing wall on both sides for a height of about 1.4 m. c) Right Side From N.R. Road upto New Bamboo Bazar. After desilting, cavities to be filled, eroded stones to be restored and pointing to be provided for about 1.8 m. 		
3	2,000	3,000	3rd Cross, New Bamboo Bazar Road	2nd Cross Road, Sudhamanagar	-	- -	a) 2000 - 2325 b) 2425 - 3000	Right Side From 3rd cross, New Bamboo Bazar Road upto 1st Main, J.C. Road. After desilting, cavities to be filled, eroded stones to be restored and pointing to be donne for existing wall on Right hand side for a height of about 1.5 m. Both Sides From J.C. Road upto 2nd cross, Sudhamanagar. After desilting, cavities to be filled, eroded stones to be restored and pointing to be provided for existing wall on both side for a height of about 1.5 m.		
4	3,000	4,000	2nd Cross Road, Sudhamanagar		a) 3000 - 3500 <u>B</u>	oth Side	a) 3000 - 3275	about 1.5 m	a) 3000 - 3500	1 n hei

Utility Shi	fting & Other Obstruction Removals
(m.)	Remarks
	14

	-
	-
	-
00	1 no. of 300 mm dia & 100 mm dia. C.I. Pipeline at 2.8 m height above bed level exists.

S	Chau	age (m.)	Loc	ation				Existing Storm Drain – Rehabilitation Works	
INC	<i>.</i>	-				Drain Wall Reconstruction		Drain Wall Restoration	l
	From	То	From	То	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m
1	2	3	4	5	6	8	9	11	12
						Near Annipura 100 m length drain wall to be reconstructed on both sides for a height of 2.4 m.		Near Sudhamanagar. After desilting, cavities to be filled, eroded stones to be restored and pointing to be done for existing wall on both side for a height of about 1.5 m	
					b) 3500 - 4000	Both Sides Near KSRTC Bus Depot 50 m length Drain wall to be reconstructed on both sides for a height of 2. 4m	b) 3275 - 3475	<u>Left Side</u> Near Annipura.	b) 3500 - 400
								After desilting, cavities to be filled, eroded stones to be restored and pointing to be done for existing wall on left hand side for a height of 1.5 m.	
							c) 3475 - 4000	Both Side Near K.S.R.T.C. Bus Depot. After desilting, cavities to be filled, erodes stones to be restored and pointing to be done for existing wall on both side for a height of 1.5 m.	
5	4,000	5,000	KSRTC Bus Depot near K.H. Double Road	Bannerghata Road near Jalakanteshwar apura	a) 4000 - 4500	Near K.S.R.T.C. Bus Depot. 100 m length drain wall to	a) 4000 - 5000	<u>Both Side</u> From K.S.R.T.C. Bus Depot upto Bannerghatta Road near Jalakantesh	a) 4000 - 500
						be reconstructed on both side for a height of 2.4 m.		warapura. After desilting, cavities to be filled, eroded stones to be restored and pointing to be done for existing drain walls on both sides for a height of 2.0 m	
					b) 4500 - 5000	Right Side Near Vinayakanagar. 100 m length drain wall to be reconstructed on both sides for a height of 2.4 m			
6	5,000	6,000	Bannerghata Road near Jalakanteshwar apura	Muthu - Mariamma Temple near L.R. Nagar foot bridge location.	-	-	a) 5000 - 5200	Both Side Near Vinayakanagar. After desilting, cavities to be filled, eroded stones to be restored and pointing to be done for existing wall on both sides for a height of 2.4 m.	

Uti	lity Shifting & Other Obstruction Removals
(m.)	Remarks
	14
000	1 no. of 100 mm dia electrical cable at 2 m height above bed level exists.
000	1 no. of 900 mm dia. w/s pipe line at 3.0 m height above drain bed exists.
500	a) 3 nos. of M.S. utility pipe & 2 nos. of cable exists near bridge location.

S		age (m.)	Loca	ation				Existing Storm Drain – Rehabilitation Works	
INC	-					Drain Wall Reconstruction		Drain Wall Restoration	U
	From	То	From	То	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m
1	2	3	4	5	6	8	9	11	12
7	6,000	7,000	Muthu - Mariamma Temple near L.R. Nagar foot bridge location.	Viveknagar Bridge Location	-	-	a) 5000 - 5200	<u>Right Side</u> Near Viveknagar Bridge location. After desilting, cavities to be filled, eroded stones to be restored and pointing to be done for existing wall on Right side for a height of 1.5 m	-
8	7,000	8,000	Viveknagar Bridge Location	National Games Village	-	-	a) 7200 - 7850	Left Side Near Indira Gandhi Slum Area. After desilting, cavitieis to be filled, eroded stones to be restored and pointing to be provided for the existing wall on left side for a height of 1.5 m.	
9	8,000	9,000	National Games Village	Koramangala 1st Cross Road	-	-	a) 8425 - 8500	Left Side Near Ejipura Church Road bridge location. After desilting, cavities to be filled, eroded stones to be restored and pointing to be provided for the existing wall on left side for a height of 1.5 m.	
							b) 8700 - 9000	Both Side Near Inner Ring Road. After desilting, cavities to be filled, eroded stones to be restored and pointing to be provided for the existing wall on both side for a height of 1.5 m.	
10	9,000	10,000	Koramangala 1st Block, 1st Cross Road	Koramangala Ist Block, 8th Cross Road		Both Side 30 m length drain wall to be reconstructed on both sides for a height of 2.2 m.	a) 9000 - 9600	Both Side Near Koramangala Ist Block. After desilting, cavities to be filled, eroded stones to be restored and pointing to be provided to the existing drain wall for a height of 1.5 m.	-
1	10,000	12,000	Koramangala Ist Block, 8th Cross Road	Location near Bellandur Tank	-	-	-	-	-

Uti	lity Shifting & Other Obstruction Removals
(m.)	Remarks
	14
	_
	-
	-
	-

						seredule For improving the c		ing Storm Drain – Carrying Capacity Improv	-			
SI.	Chaina	age (m.)	Loca	ation		Drain Widening		Drain Desilting & Deepening	D	rain Wall Raising		Bed Protection
No.	From	То	From	То	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks
1	2	3	4	5	6	8	9	11	12	14	15	17
K101	–Kora	mangala	a Layout(1)Se	econdary Sto	orm Drain:						1	1
1	0	1,000	Hosur Main Road	Koramangala 5th Block, 5th Cross Road	-	-	0 - 1000	This Reach of drain is almost covered and it needs to be opened at regular interval and desilted by about 0.3 m. Further, pre-fabricated steel grating needs to be provided at regular interval.	-	-	-	-
								Existing Average Width:3m				
2	1,000	2,000	Koramangala 5th Block, 5th Cross Road	Ejipura Church Road Bridge	1800 - 2000	<u>Right Side</u>	1000 - 2000					
						Koramangala 80 Feet Road upto Ejipura Church Road Bridge.		This reach of drain is almost covered (upto Ch. 1400 m). It needs to be opened at regular interval and desilted by about 0.3 m.	-	-	a) 1800 - 2000	After desilting bed protection need to be provided for full lengfth & width.
						Existing drain needs to be widened on right hand side.		Further, from (1400 - 2000 m) it is open drain.				
						Existing width 2.75 m widened to 4.5 m & height 2.2 m		Existing average width: 4 m				
K102	-Kora	mangala	a Layout(2)Se	econdary Sto	orm Drain:							1
1	0	300	Hosur Main Road	Jyothi Niwas Womens College	-	-	0 - 300	This Reach of drain is open drain upto Ch. 200 m and further, it is closed (upto 300 m). It needs to be opened at regular interval and desilted by about 0.3 m. Further pre-fabricated steel grating needs to be provided at regular interval.	-	-	-	-
								Existing Width : 2.0 m				
K103	Aust	in Town	Secondary S	Storm Drain:		[]				Г	1	,
1	0	1,000	M.G. Road	Corpn. Work Shop, near Magrath Road	-	-	0 - 1000	This Reach of drain is almost covered and it needs to be opened at regular interval and desilted by about 0.3 m. Further, pre-fabricated steel grating needs to be provided at regular interval.		-	-	
								Existing average width: 3 m				
2	1,000	2,000	Shop, near	KPTCL Office near Old Race Course Road	a) 1050 - 1700	<u>a) Left Side</u>	a) 1000 - 2000	Existing drain needs to be desilted by about 0.5 m			a) 1000 - 2000	
						From Shoppers Stop Commercial Complex near Magarath Road upto Victoria Road.			-	-		 a) After desilting drain bed needs to be provided for full length & width.
						Existing drain needs to be widened on Left Hand Side and on right hand side near Kendriya Vidyalaya.						
						Existing width: 3.0 m to 6.5 m & ht. 2.0 m						
					b) 1700 - 2000	Left Side						
1 1	1			•	,	, I	I			1	•	

Table - 6.9 Schedule For Improving the Carrying Capacity of Existing Secondary Storm Drains in Koramangala Main Valley

		Bed Protection
6	Chainage (m.)	Remarks
	15	17
	-	-
	a) 1800 - 2000	After desilting bed protection need to be provided for full lengfth & width.

			Location				Exist	ing Storm Drain – Carrying Capacity Improv	ements Work	S		
SI. No.	Chain	age (m.)	Loca	ation		Drain Widening		Drain Desilting & Deepening	Dra	ain Wall Raising	Bed Protection	
NO.	From	То	From	То	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks
1	2	3	4	5	6	8	9	11	12	14	15	17
						From Victoria Road upto KPTCL Office.						
						Existing drain needs to be widened on left hand side and further from Palm Grove road drain needs to be widened on right hand side upto KPTCL office.						
						Existing width: 7.0 m to 10.0 m & ht. 2.2 m						
3	2,000	3,400	KPTCL Office near Old Race Course Road	Rose Garden near Neelasandra	-		a) 2000 - 3400	Existing drain need to be desilted by about 0.4 m and further after desilting drain bed needs to be deepened by about 0.5 m	-	-	a) 2000 - 3400	After desilting drain bed needs to be provided for full length & width.
K10	M Lake	andra S	Secondary Sto	orm Drain:		Existing width: 8 m						
IX IU	Laks	Sanura J	Secondary Sl			a) Left Side			I			1
1	0	1,700	Lalajinagar near MICO Factory	Pothalappa Garden near Annapalya	a) 800 - 900	New MICO Layout Road near Pukraj Layout.	a) 0 - 1700	Existing drain needs to be desilted by about 0.4 m.	-	-	a) 150 - 900	 a) After desilting drain bed needs to be provided for full length & width
						Existing drain needs to be widened on left hand side		Existing Av. Width : 2.5 m				
						Existing average width: 2.5 widened to 4.0 m and height 2.0 m						
					b) 1525 - 1700	b) Left Side					b) 1450 - 1700	b) After desilting drain bed needs to be provided for full length &
					b) 1323 - 1700	<u>b) Len Side</u>					5) 1450 - 1700	width
						Opp. NDRI. Existing drain needs to be widened on left hand side.						
						Existing width 2.5 m widened to 5.0 m and height 2.0 m						
K10	7–Laks	shamma	Garden Seco	ondary Storm	Drain:							
1	0	770	Langford Town	Jalakanteshwa rapura	-	-	0 - 770	Existing drain needs to be desilted by about 0.4 m depth and further, from Ch. 400 upto Ch. 700 m.	-	-	-	-
								Existing covered drain needs to be opened at regular				
								interval and desilted by about 0.5 m and further pre- fabricated steel grating needs to be provided at regular				
								interval.				
								Existing width: 4 m				
K10		1,000	econdary Sto	Venkata		1	a) 0 1000				a) 200 - 1000	After desilting, bed protection
I	0	1,000	Someshwara- pura, near Jayanagar 1st Block	Reddy Layout	-	-	a) 0 - 1000	Existing covered drain from Ch.0 - 200 m needs to be opened at regular interval and desilted for about 0.3 m and further pre-fabricated steel grating needs to be provided at regular interval.		-	a) 200 - 1000	After desining, bed protection needs to be provided for full length & width.
								Further, from Ch. 200 - 1000 m, it is open drain and it needs to be desilted by about 0.3 m and further, after desilting drain bed needs to be deepened by about 0.4				
								m.				
2	1,000	1,925	Venkata Reddy Layout	Wilson Garden	a) 1150 - 1250	<u>a) Both Side</u>	a) 1150 - 1250	a) This reach of drain needs to be desilted by 0.4 m and further deepened by abaout 0.5 m.			a)1150 - 1250	After desilting, bed protection needs to be provided for full length & width.
						Near Marigowda road. Existing dran is in natural condition. It needs to be widened and new wall to be constructed on both sides.					b)1650 - 1925	After desilting, bed protection needs to be provided for full length & width.

							Exis	isting Storm Drain – Carrying Capacity Improvements Works
SI. No.		age (m.)	Loca	ation		Drain Widening		Drain Desilting & Deepening Drain Wall Raising
110.	From	То	From	То	Chainage (m.)	Remarks	Chainage (m.)	n.) Remarks Chainage (m.) Rema
1	2	3	4	5	6	8	9	11 12 14
						Existing average width : 2 m widened to 3. 5 m ht. 1.6 m.	b) 1250 - 1650	 b) This Reach of drain is almost covered and it needs to be opened at regular interval and desilted by about 0.5 m and further, pre-fabricated steel grating needs to be provided at regular interval.
					b) 1650 - 1925	From Wilson Garden, 10th Cross Road upto K-Valley primary drain location. Existing stone slab covered drain needs to be opened		This Reach of drain is almost covered and it needs to be opened at regular interval and desilted by about 0.5 m and further, pre-fabricated steel grating needs to be provided at regular interval.
						and widened on Right hand side. Further, after widening, new RCC walls to be constd. on both sides and this entire reach of drain needs to be covered with 325 mm thick RCC slab.		
						Existing average width : 1.5 m widened to 5.0 m height 2.0 m		
K1(09–Raja	r			y Storm Drain	:		
1	0	1,000	Kanteerava Stadium	12th Cross, Sampangi Ramnagar	-	-	a) 0 - 1000	 a) This Reach of drain is almost covered and it needs to be opened at regular interval and desilted by about 0.3 m and further pre-fabricated steel grating needs to be provided at regular intervals.
								Existing average width: 2m
2	1,000	2,000	12th Cross, Sampangi ramnagar	Raja Ram Mohan Roy Extn.	a) 1150 - 1300	· · · · · · · · · · · · · · · · · · ·		
						From 14th Cross, Sampan-giramnagar upto Mission Road	a) 1000 - 2000	 a) This Reach of drain is almost covered and it needs to be opened at regular interval and desilted by about 0.3 m and further, pre-fabricated steel grating needs to be provided at regular interval.
						Existing covered drain needs to be opened and widened on Right hand side and further on left hand side (From existing 1.5 m to 3.0 m). Further, RCC Box drain of size 3 x 2 needs to be constructed, at the same location.		Existing average width : 3.0 m
					b) 1475 - 1600	b) <u>Left Side</u> Near Bangalore Institute of Oncology.		
						Existing B.S. Slab covered drain needs to be opened widened on left hand side and further, new RCC box drain of size 3 x 2 m needs to be constructed.		
						Existing average width: 2		
K1		-	ondary Storn		a) E0E _ 00E		a) 0 005	
1	0	625	Hosur Road	Sudhama Nagar	a) 525 - 625	Left Side	a) 0 - 625	needs to be opened at regular interval and desilted.
						Near Labour Commi-ssioner's office near Sudhamanagar.	1	Further, from (Ch. 100 - 500 m) open drain, it needs to be desilted by about 0.4 m.

		Bed Protection
5	Chainage (m.)	Remarks
	15	17
	-	-
	a) 100 - 525	After desilting, bed protection needs to be provided for full length & width. Existing average width : 2 m

			_				Exis	ting Storm Drain – Carrying Capacity Improv	ements Wor	ks		
SI. No.		ainage (m.)	Loca	ition		Drain Widening		Drain Desilting & Deepening	Dr	ain Wall Raising		Bed Protection
NO.	From	n To	From	То	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks
1	2	3	4	5	6	8	9	11	12	14	15	17
						Existing drain needs to be widened on left hand side. Existting average width : 1.8 m widened to 4.0 m. ht. 1.6 m						After desilting, bed protection needs to be provided for full length & width. Proposed average width : 4 m
K11	11–Jav	yanagar S	econdary Sto	rm Drain:								
1	0	950	South End Road, near Jayanagar 2nd Block	Lalbagh Tank	-	-	a) 0 - 950	 a) This reach of drain is almost covered and it needs to be opened at regular interval and desilted by about 0.4 m and further, pre-fabricated steel gratings needs to be provided at regular interval. Existing width : 2 m 		-	-	-
K11	12–Ka	lasipalya	Secondary St	orm Drain:								
1	0	715	Parvathipura	Kumbara Gundi	-	-	a) 0 - 715	 a) Existing drain needs to be desilted by about 0.5 m Existing average width: 4 m 	-	-		 a) After desilting drain bed needs to be provided for full length & width.

				Table - 6	6.10 Sch	edule For Providing Rehabilatation	n to the Exist	ting Secondary Storm Drains in Koramang	ala Main Val	lley
SI. No.	Chaina	ige (m.)	Loca	ition			Exis	ting Storm Drain – Rehabilitation Works		
NO.						Drain Wall Reconstruction		Drain Wall Restoration	Utility	Shifting & Other Obstruction Removals
	From	То	From	То	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks
1	2	3	4	5	6	8	9	11	12	14
K10)1 – Kora	mangala	a Layout (1) Se	econdary Stor	m Drain		Γ			
1	0	1,000	Hosur Main Road	Koramangala 5th Block, 5th Cross Road	-	-			-	-
2	1,000	2,000	Koramangala 5th Block, 5th Cross Road	Ejipura Church Road Bridge	-	-	a) 1600 - 2000	Both Side After desilting, cavities to be filled, eroded stones to be	-	-
			Stin Cross Road					restored and pointing to be done to the existing drain wall on both sides for a height of about 0.8 m.		
K10	2-Koran	nangala	Layout(2)Seco	ondary Storm	Drain:					
1	0	300	Hosur Main Road	Jyothi Niwas Womens College	-	-	-	-	-	-
K10	3–Austir	ר ז Town S	Secondary Sto	rm Drain:			l			
1	0	1,000	M.G. Road	Corpn. Work Shop, near Magrath Road	-	-	0-1000	This Reach of drain is almost covered and it needs to be opened at regular interval and desitted by about 0.3 m. Further, fabricated steel grating needs to be provided at regular interval. Existing average width : 3 m	-	-
2	1,000	2,000	Corpn. Work Shop, near Magrath Road	KPTCL Office near Old Race Course Road	-	-	a) 1000 - 1700	Left Side		
								After desilting, cavities to be filled, eroded stones to be restored and pointing to be done to the existing drain wall on Left side for a height of about 1.5 m		
							b) 1700 - 2000	<u>Right Side</u> After desilting, cavities to be filled, eroded stones to be		
								restored and pointing to be done to the existing drain wall on Right side for a height of about 1.5 m		
								Both Side		
3	2,000	3,400	KPTCL Office near Old Race Course Road	Rose Garden near Neelasandra	-	-	a) 2000 - 2300		a) 2000 - 2500	 a) 16 nos. of water supply, KPTCL & BSNL pipelines and cables exists.
								After desilting, cavities to be filled, eroded stones to be restored and pointing to be done to the existing drain wall on Both sides for a height of about 1.5 m		

SI. No.	Chaina	ige (m.)	Loca	ition			Exis	ting Storm Drain – Rehabilitation Works		
						Drain Wall Reconstruction		Drain Wall Restoration	Utility	Shifting & Other Obstruction Removals
	From	То	From	То	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks
1	2	3	4	5	6	8	9	11	12	14
							b) 3200 - 3400	Both Side After desilting, cavities to be filled, eroded stones to be restored and pointing to be done to the existing drain wall on Both sides for a height of about 1.5 m	b) 2500 - 3400	a) 1 no. of 600 mm dia and 1 no. of 100 mm dia. pipeline exists.
K10	4–Laksa	ndra Se	condary Storm	Drain:						
1	0	1,700	Lalajinagar near MICO Factory	Pothalappa Garden near Annapalya	-	-	a) 150 - 800	Both Sides After desilting, cavities to be filled, eroded stones to be restored and pointing to be done to the existing drain wall on Both sides for a height of about 1.0 m	-	-
							b) 800 - 900	<u>Right Side</u> After desilting, cavities to be filled, eroded stones to be restored and pointing to be done to the existing drain wall on Right side for a height of about 1.0 m		
							c) 1400 - 1700	Right Side After desilting, cavities to be filled, eroded stones to be restored and pointing to be done to the existing drain wall on Right side for a height of about 1.0 m		
K10	7–Laksh	amma G	arden Second	lary Storm Dra	ain:					
1	0	770	Langford Town	Jalakanteshwar apura	-	-	-	-	-	-
K10	8–Sidda	pura Seo	condary Storm	Drain:			1			
1	0	1,000	Sonmeshwarap ura near Jayanagar Ist Block	Venkata Reddy Layout	-	-	a) 200 - 1000	 <u>a) Both Side</u> After desilting, cavities to be filled, eroded stones to be restored and pointing to be done to the existing drain wall on both sides for a height of about 1.5 m. 		-
2	1,000	1,925	Venkata Reddy Layout	Wilson Garden	-		a) 1650 - 1925	a) <u>Left Side</u> After desilting, cavities to be filled, eroded stones to be restored and pointing to be done to the existing drain on left side for a height of about 1.5 m.		 a) 1 no. of 300 mm dia. C I water supply pipeline line exists. b) 6 nos. of 1.2 m dia Manhole exists a) 1 no. of 150 mm dia water supply pipeline exists.

SI. No.	Chaina	age (m.)	Loca	ation			Exis	ting Storm Drain – Rehabilitation Works		
NO.						Drain Wall Reconstruction		Drain Wall Restoration	Utility	Shifting & Other Obstruction Removals
	From	То	From	То	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks
1	2	3	4	5	6	8	9	11	12	14
K10	9–Raja F	Ram Moh	nan Roy Extn.	Secondary St	orm Drain:		-	-	-	
1	0	1,000	Kanteerava Stadium	12th Cross, Sampangi Ramnagar	-	-	-	-	-	-
2	1,000	2,000	12th Cross, Sampangi ramnagar	Raja Ram Mohan Roy Extn.	-	-	-	-	-	-
K11	0-Lalba	gh Secor	ndary Storm D	rain:						
1	0	625	Hosur Road	Sudhama-nagar	-	-	a) 100 - 525	<u>a) Both Side</u> After desilting, cavities to be filled, eroded stones to be restored and pointing to be done to the existing drain wall on both sides for a height of about 1.0 m		-
K11	1–Jayan	agar Sec	condary Storm	Drain:			•		•	
1	0	950	South End Road, near Jayanagar 2nd Block	Lalbagh Tank	-	-	-	-	-	-
K11	2–Kalas	ipalya Se	econdary Stor	m Drain:			-	·	-	
1	0	715		Kumbara Gundi	-	-	a) 0 - 715	Both Side After desilting, cavities to be filled, eroded stones to be restored and pointing to be done to the existing drain wall on both sides for a height of about 1.0 m.		-

							E	xisting Storm Drain – Carrying Capacity I	nprovements Wo	orks		
SI. No		age (m.)	Loc	ation		Drain Widening		Drain Desilting & Deepening	Drair	wall Raising		Bed Protection
NO.	From	То	From	То	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks
1	2	3	4	5	6	8	9	11	12	14	15	17
K1 ⁻	13–Rajei	ndranaga	ar Secondary Sto	orm Drain:								
1	0	1,000	Royal Parikrama Centre near Koramangala 8th Block	Rajendra Nagar 1st Main Road	600-900	 a) Both side From Mariyamma temple upto Muneshwara temple. Existing drain is in natural condition and it needs to be widened on right hand side and new walls to be constructed for widened width on both sides. Width: 5.0 m & Height 1.6m 		Existing drain needs to be drilled f about 0.5 m depth.	or -	-	a) 0 - 600 b) 600 - 1000	 a) After drilling, drain bed needs to be provided for full length & width. Ex-Average width 3.5 m. b) After drilling, drain bed needs to be provided for full length & width. Ex-Average width 5.0 m.
2	1,000	2,225	Rajendra Nagar 1st Main Road	Koramangala Main Valley Primary drain (behind Akhila Karnataka Animal Rehabilitation Centre)	-	-	1000 - 2225	This reach of drain is almost covered a it needs to be opened at regular intervand desilted by about 0.5 m depth.		-	a) 1000 - 1200	a) After drilling, drain bed needs to be provided for full length & width. Ex- Average width 8.5 m.
									-	-	b) 2100 -2225	a) After drilling, drain bed needs to be provided for full length & width. Ex- Average width 9.0 m.

Table 6.9 Schedule For Improving the Carrying Capacity of Existing Secondary Storm Drains in Koramangala Main Valley

				Table - 6.10) Schedule	e For Providing Rehabilata	tion to the Ex	isting Secondary Storm Drains in Koramangala Main Valley		
SI. No.	Chaina	age (m.)	L	ocation				Existing Storm Drain – Rehabilitation Works		
NO.					Dr					ing & Other Obstruction Removals
	From	То	From	То	Chainage (m.)	Remarks	Chainage (m.	Remarks	Chainage (m.)	Remarks
1	2	3	4	5	6	8	9	11	12	14
K11	3-Raien	dranadaı	Secondary Storm	Drain:			-			
1	0	1,000	Royal Parikrama Centre near Koramangala 8th Block	Rajendra Nagar 1st Main Road	-	-	a) 0 - 600	Both side: From Parikrama Centre upto Mariamma Temple. After drilling, cavities to be filled, eroded stones to be restored and pointing to be done for existing wall on both side for a height of about 1.4 m	-	-
							b) 900 - 1000	Both side: From Muneshwara Temple upto Rajendranagar 1st Main road. After drilling, cavities to be filled, eroded stones to be restored and pointing to be done for existing wall on both side for a height of about 2.0 m		
2	1,000	2,000	Rajendra Nagar 1st Main Road	Koramangala Main Valley Primary drain (behind Akhila Karnataka Animal Rehabilitation Centre)	-	-	a) 1000 - 1200	Both side: From Rajendranagar 1st Main road upto Koramangala 80 Ft. Road. After drilling, cavities to be filled, eroded stones to be restored and pointing to be done for existing wall on both side for a height of about 2.0 m	-	-
								Both side:		
							b) 2100 - 2225	From Akhila Karnataka Animal Rehabilitation Centre. After drilling, cavities to be filled, eroded stones to be restored and pointing to be done for existing wall on both side for a height of about 2.2 m		

						Table - 6.9	Schedule For I	mproving the Carrying Capacity of Exist	ing Second	ary Storm Drains in	n Tavarekere Va	lley
								Existing Storm Drain	- Carrying C	apacity Improvemer	nts Works	
SI. No.	Chaina	age (m.)	Loca	ation	Di	rain Widening		Drain Desilting & Deepening	D	rain Wall Raising		
NO.	From	То	From	То	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	
1	2	3	4	5	6	8	9	11	12	14	15	17
K 1	14– Akk	ithimma	nahalli Secon	dary Storm	Drain:							
1	0	1,100	Divyasree Chamber	KSRTC Training centre	-		0-350	This reach of drain is almost covered and it needs to be opened at regular interval and desilted by about 0.4m. Further steel grading needs to be provided at regular interval. Ex.Avg. Width:1.8 m		-		
					-	-	350-650	This reach of drain is almost covered and it needs to be opened at regular interval and desilted by about 0.4m.		-	350-650	After drilling length & wic
					-	-	650-750	This reach of drain is almost covered and it needs to be opened at regular interval and desilted by about 0.5m.		-		
							750-1100	This reach of drain is almost covered and it needs to be opened at regular interval and desilted by about 0.4m.		-		

Bed Protection
Remarks

y, bed protection needs to be provided for full dth.

					Table	-6.10 Schedule For Provid	ding Rehabil	atation to the Existing Secondary Storm Drains	in Tavareker	e Valley	
SI. No.	Chaina	age (m.)	Loc	ation				Existing Storm Drain – Rehabilitatior	Works		
NO.		-			Dr	ain Wall Reconstruction		Drain Wall Restoration	Utility Shifting		
	From	То	From	То	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)		
1	2	3	4	5	6	8	9	11	12		
K 11	4–Akkit	himmana	ahalli Seconda	ry Storm Drai	n:						
1	0	1,100	Divyasree Chamber	KSRTC Training centre	-	-	350-650	Both side After drilling, cavities to be filled, eroded stones t be restored and pointing to be done to the existin drains wall o both sides for a height of about 1.2 m	g	6 Nos. of 1.2 m dia ma	
					-	-	750-1100	Both side After drilling, cavities to be filled, eroded stones t be restored and pointing to be done to the existin drains wall o both sides for a height of about 1.2 m	g	-	

er Obstruction Removals

Remarks

14

manhole exits.

Table - 6.9 Schedule For Improving the Carrying Capacity of Existing Primary Storm Drain in Tavarekere Main Valley (K200)

	Chaina	age (m.)	Loca	ation				Existing Storm Drain – Carrying Capacity	Improvements	s Works		
No.						Drain Widening		Drain Desilting & Deepening	Dra	in Wall Raising		Bed Protection
	From	То	From	То	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks
	2		4	5	6	8	9	11	12	14	15	17
1	0		Sanatorium Road, Near NIMHANS Hospital	Mundkar Fire Service College near Jayanagar East Block	-	-	a) 0 - 1000	 a) Existing drain needs to be desilted by about 0.4 m and further covered reach of drain from (Ch. 325 m to 750 m) needs to be opened and pre-fabricated steel grating needs to be provided at regular interval. Existing Average widht: 4 m. 	-		a) 750 - 1000	After desilting drain bed needs to be provided for ful length & width.
2	1,000	2,000	Mundkar Fire Service College near Jayanagar East Block	Tank Bund Road Near Bismilah- nagar	-	-	a) 1000 - 2000	a) Existing drain needs tobe desilted by about 0.4 m.	-	-	a) 1000 - 1225	After desilting drain bed needs to be provided for ful length & width.
								Existing Average Width: 4 m			b) 1325 - 1500	After desilting drain bed needs to be provided for ful length & width.
											c) 1800 - 2000	After desilting drain bed needs to be provided for ful length & width.
3 2	2,000		Tank Bund Road near Bismillanagar	Brindavan Nagar	a) 2050 - 2340	a) Both Sides	a) 2000 - 3000	a) Existing drain needs to be desilted by about 0.4 m	-	-	a) 2000 - 3000	After desilting drain bed needs to be provided for ful length & width
						Near Balajinagar 19th Main Road Existing drain is in natural condition and new RCC walls needs to be constd. on both sides for a ht. of 1.8 m.						
					b) 2340 - 2400	b) Left Side Existing drain needs to be widened on left hand side. Existing width: 4.5 m widened to 7.5 m ht. 2.0 m						
					c) 2700 - 2900	A) Left Side Near Brindavanagar Existing drain needs to be widened on left hand side and new RCC wall to be constd. Existing width: 7.5 widened to 10.5 m & ht. 2.2 m						
					d) 2900 - 3000	Right Side Near Brindavannagar. Existing drain needs to be widened on Right hand side and new RCC wall to be constd. Existing width: 5 m widened to 10.5 m & height 2.2 m						
4 (3,000	4,000	Brindavan Nagar	36th Main Road, BTM Layout, 1st Stage			a) 3000 - 4000	a) Existing drain needs to be desilted by about 0.4 m	-		a) 3000 - 4000	After desilting bed protection needs to be provided fo full length & width.
						Near Maruthi Nagar, Madivala Extn. (KPN Travels) Existing drain needs to be widened on Right hand side and new RCC wall to be constd. Existing width : 6 m widened to 10.5 m & height 2.4 m						
						Right Side Near Venkateshwara Layout - Existing drain needs to be widened on Right hand side and new RCC wall to be constd. Existing width: 7.0 m widened to 10.5 m & ht. 2.4 m						
					c) 3450 - 3550	Left Side Near Ramaiah Garden Existing drain needs to be widened on left hand side and new RCC wall to be constd.						
STUP	Consi	ultants P	. Ltd.		l	Existing width: 5 m widened to 10.5 m & height 2.4 m	l	l			I	Page No

nage (m.)	Loca	ation				Existing Storm Drain – Carrying Capacity	Improvement	s Works		
				Drain Widening		Drain Desilting & Deepening	Dra	in Wall Raising		Bed Protection
n To	From	То	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks
3	4	5	6	8	9	11	12	14	15	17
			d) 3750 - 4000	Near Madivala -						
5,000	36th Main Road, BTM Layout, 1st Stage	Fern Hill Garden Apts. near HSR Layout	a) 4000 - 4150	Right Side	a) 4000 - 5000	Existing drain needs to be desilted by about 0.4 m	-	-		After desilting bed protection needs to be provided for full length & width.
				Near CSB Research Centre Existing drain needs to be widened on right hand side and new RCC wall to be constd. Existing Width: 8 m to 10.5 m and height 2.4 m		Existing Average Width : 9 m				
0 6,000	Fern Hill Garden, Apartments near HSR Layout	HSR Layout, Sector-5 near 14th Main Road (Agara Tank)	-	-	a) 5000 - 6000	Existing drain need to be desilted by about 0.4 m	-	-	a) 5000 - 6000	After desilting bed protection needs to be provided for full length & width.
						Existing Average width: 14 m				
0 7,600	HSR Layout, Sector-5 near 14th Main Road (Near Agara Tank)	Location near Bellandur Tank	7000 - 7600	<u>Both Side</u> Near Koramangala - Sarjapura Road	1) 6000 - 7000	Existing drain needs to be desilted by about 0.5 m for full length and further from Ch. 7000 m to 7600 m. After desilting, drain bed needs to be deepened by about 0.5 m.		-	a) 6000 - 7000	After desilting drain bed protection needs to be provided for full length and width.
				Existing drain is in natural condition and it needs to be widened on both sides. Further, embankment to be made on both side with imported earth and dry stone revetment needs to be provided on both sides for full length and guard stones to be provided at every 10 m interval and new 7.5 m wide Service Road needs to be formed for 500 m length. Existing width: 20 m		Ch. 6000 - 7000 Existing width: 15.0 m				
	3 0 5,000 0 6,000	3 4 3 4 0 5,000 36th Main Road, BTM Layout, 1st Stage 0 6,000 Fern Hill Garden, Apartments near HSR Layout 0 7,600 HSR Layout, Sector-5 near 14th Main Road (Near	3 4 5 0 5,000 36th Main Road, BTM Layout, 1st Stage Fern Hill Garden Apts. near HSR Layout 0 6,000 Fern Hill Garden, Apartments near HSR Layout HSR Layout, Sector-5 near 14th Main Road (Agara Tank) 0 7,600 HSR Layout, Sector-5 near 14th Main Road (Near Location near Bellandur Tank	3 4 5 6 3 4 5 6 4 5 6 5 0 36th Main Road, BTM Layout, 1st Stage Fern Hill Garden Apts. near HSR Layout a) 4000 - 4150 0 6,000 Fern Hill Garden, Apartments near HSR Layout HSR Layout, Sector-5 near 14th Main Road (Agara Tank) - 0 7,600 HSR Layout, Sector-5 near 14th Main Road (Near Location near Bellandur Tank 7000 - 7600	Tool From Tool Chainage (m.) Remarks 3 4 5 6 8 3 4 5 6 8 0 5,000 36th Main Road, BTM Layout, 1st Stage Fern Hill Garden Apts. near HSR Layout a) 4000 - 4150 Right Side Near CSB Research Centre Existing drain needs to be widened on right hand side and new RCC wall to be constd. 0 6,000 Fern Hill Garden, Apartments near HSR Layout HSR Layout, Agara Tank) HSR Layout, Agara Tank) - - 0 7,600 HSR Layout, Sector 5 near HSR Layout Location near Bellandur Tank 7000 - 7600 Both Side Near Koramangala - Sarjapura Road 0 7,600 HSR Layout, Main Road (Near Agara Tank) Location near Bellandur Tank 7000 - 7600 Both Side Near Koramangala - Sarjapura Road	Image: Non-Section Problem Drain Widening 1 To From To Chainage (m.) Remarks Chainage (m.) 3 4 5 6 8 9 3 4 5 6 8 9 4 3 4 5 6 8 9 5 3 4 5 6 8 9 6 3 5 6 8 9 9 6 5.000 36th Main Road, BTM Layout, 1st Stage Fem Hill Garden Apts. near HSR Layout, Stage a) 4000 - 4150 Right Side Near CSB Research Centre Exating drain needs to be widened on right hand side and new RCC will to be consid. Existing Width: 8 m to 10.5 m and height 2.4 m a) 5000 - 6000 0 6.000 Fem Hill Garden, HSR Layout, Apartments near HSR Layout, Sector 5 near HSR Layout, Sector 5 near HSR Agara Tank) Location near Bellandur Tank Main Road (Agara Tank) Could to be consid. Existing Width: 8 m to 10.5 m and height 2.4 m a) 5000 - 6000 0 7.600 HSR Layout, Main Road (Near Yama) Location near Bellandur Tank Bellandur Tank Bellandur Tank Bellandur Tank Bellandur Tank Bellandur Tank Bel	Image: state	Image: Note of the second se	Image: Note of the second se	Image: Control of the second

				Т	able - 6.10	Schedule For Providing Rehabilata	ation to the Existi	ng Primary Storm Drain in Tavarekere Main Valley (K20	00)
SI No		nage (m.)	Loca	ation				Existing Storm Drain – Rehabilitation Works	
						Drain Wall Reconstruction		Drain Wall Restoration	
	From	То	From	То	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)
1	2	3	4	5	6	8	9	11	12
K2	200 – Tav	arekere V	alley Primary Storm Dra	ain	1			1	1
1	0	1,000	Sanatorium Road, Near NIMHANS Hospital	Mundkar Fire Service College near Jaynagar East Block	-	-	a) 750 - 1000	a) Both Side After desilting, cavities to be filled, eroded stones to be restored and pointing to be done on both sides to the existing drain wall for a height o about 0.5 m.	
2	1,000	2,000	Mundkar Fire Service College near Jayanagar East Block	Tank Bund Road Near Bismilahnagar	-	-	a) 1000 - 2000	a) Both Side After desilting, cavities to be filled, eroded stones to be restored and pointing to be done on both sides for the existing drain wall for a height o 0.6 m	
3	2,000	3,000	Tank Bund Road near Bismillanagar	Brindavan Nagar	-	-			a) 2000 - 2500
							a)2340 - 2400 b)2400 - 2700	After desilting, cavities to be filled, eroded stones to be restored and pointing to be done on Right side for the existing drain wall for a height o 0.6 m Both Side After desilting, cavities to be filled, eroded stones to be restored and pointing to be done on both sides for the existing drain wall for a height o	f
							c)2700 - 2900	0.6 m <u>Right Side</u> After desilting, cavities to be filled, eroded stones to be restored and pointing to be done on Right side for the existing drain wall for a height o 0.6 m	f
							d)2900 - 3000	Left Side After desilting, cavities to be filled, eroded stones to be restored and pointing to be done on Left side for the existing drain wall for a height o 0.6 m	
4	3,000	4,000	Brindavan Nagar	36th Main Road, BTM Layout, 1st Stage	-	-	a) 3000 - 3300	Both Sides a) After desilting, cavities to be filled, eroded stones to be restored and pointing to be done to the existing drain wall on both sides for a height o about 1.5 m.	a) 3000 - 3500
							b) 3300 - 3475	Left Side After desilting, cavities to be filled, eroded stones to be restored and pointing to be done to the existing drain wall on left side for a height o about 1.5 m.	

	Jtility Shifting & Other Obstruction Removals
m.)	Remarks
	14
	a) 8 nos. of 100 mm dia. Sewer Outlets exists - Left Side
	b) 10 nos. of 100 mm dia. Sewer Outlets exists - Right Side
0	a) 5 nos. of 100 mm dia. Sewer Outlets exists - Left Side
	b) 4 nos. of 100 mm dia. Sewer Outlets exists - Right Side
00	a) 10 nos. of 100 mm dia sewer line exists - Left Side
	b) 12 nos. of 100 mm dia. sewer line exists - Right Side
00	a) 10 nos. of 100 mm dia. sewer outlets exists - Left Side
	b) 12 nos. of 100 mm dia. sewer outlets exists - Right Side
	c) 4 Nos. of 1.2 m dia manholes exits.
00	a) 10 nos. of 100 mm dia Sewer outlets exists - Left Side
	b) 11 nos. of 100 mm dia Sewer outlets exists - Right Side
	c) 5 nos. of 100 mm dia Sewer outlets exists - Left Side
	d) 6 nos. of 100 mm dia Sewer outlets exists - Right Side
00	
	a) 10 nos. of 100 mm dia Sewer outlets exists - Right Side

. Cha	Chainage (m.) Location		cation				Existing Storm Drain – Rehabilitation Works			
					Drain Wall Reconstruction		Drain Wall Restoration		Utility Shifting & Other Obstruction Removals	
From	n To	From	То	Chainage (m.)	Remarks	Chainage (m.) Remarks	Chainage (m.)) Remarks	
2	3	4	5	6	8	9	11	12	14	
						c) 3475 - 3525	Right Side After desilting, cavities to be filled, eroded stones to be restored and		b) 10 nos. of 100 mm dia Sewer outlets exists - Left Side	
							pointing to be done to the existing drain wall on Right side for a height of about 1.5 m.			
						d) 3525 - 3625				
							After desilting, cavities to be filled, eroded stones to be restored and pointing to be done to the existing drain wall on left side for a height of about 1.5 m.			
						e) 3625 - 3750	Both Sides			
							After desilting, cavities to be filled, eroded stones to be restored and pointing to be done to the existing drain wall on both sides for a height of about 1.5 m.			
						f) 3750 - 4000	Right Side			
							After desilting, cavities to be filled, eroded stones to be restored and pointing to be done to the existing drain wall on Right side for a height of about 1.5 m.			
4,000	5,00	0 36th Main Road, BTM Layout, 1st Stage	Fern Hill Garden Apts. near HSR Layout	-	-	a) 4000 - 4100	Right Side	a) 4000 - 5000	a) 16 nos. of 100 mm dia Sewer outlets exists - Left Side	
							After desilting, cavities to be filled, eroded stones to be restored and pointing to be done on Right side to the existing drain wall for a height of 1 m.		b) 20 nos. of 100 mm dia Sewer outlets exists - Right Side	
						b) 4100 - 4350	Both Sides		c) 2 no. of 1.2 m dia & 1 m height above drain bed level e	
							After desilting, cavities to be filled, and eroded stones to be restored and pointing to be done on both sides to the existing drain wall for a height of 1 m.			
						c) 4450 - 5000	Both sides			
							After desilting, cavities to be filled, and pointing to be done on both sides to the existing drain wall for a height of 1 m.			
5,000	6,00	0 Fern Hill Garden, Apartments near HSR Layout	HSR Layout, Sector-5 near 14th Main Road (Agara Tank)	a) 5500 - 6000	Both Side Near Fern Hill Garden Apartments near HSR Layout.	a)5000-6000	a) <u>Both Sides</u>	a) 5000 - 6000	a) 8 nos. of 100 mm dia. Sewer outlets exists - Left Side	
					5 m wall to be reconstructed on both sides to a height of about 2.2 m		After desilting, cavities to be filled and pointing to be done on Both sides to the existing drain wall for a height of 1.0 m		b) 10 nos. of 100 mm dia. Sewer outlets exists - Right Sid	
6,000) 7,60	0 HSR Layout, Sector-5 nea 14th Main Road	ar Location near Bellundur tank		Near Koramangala Sarjapura Rd.Ex-drain is in natural condition and it needs to be widened on both sides. Further, embankment to be made on both sides with imported earth and dry stones revetment needs to be provided on both sides for full length and gold stones to be provided at every 10 m interval and new 7.5 m Service Rd, needs to be formed for 500 m length.		After desilting, cavities to be filled, eroded stones to be restored and pointing to be done on both sides to the existing drain wall to a height of about 1.0 m.		1) 1 no. of 0.5 m BWSSB C.I. Sewer line exists.	
		(Near Agara Tank)			Ex-Width:20 m. Pro-widening width : 30 m (Bottom) & ht. 2.2 m				2) 5 nos. of cables exists.	

	hainage (n	1.) Loc	ation				Existing Storm Drain – Carrying Capac	ity Improven	nents Works		
No.					Drain Widening		Drain Desilting & Deepening	• •	rain Wall Raising		Bed Protection
			1						-		
F	rom To	From	То	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks
1	2 3	4	5	6	8	9	11	12	14	15	17
K201–	Vanganah	alli Secondary	Storm Drain							·	
1	0 1,35	0 Vanganahalli	Agara Tank	a) 725 - 850	Left Side Near HBR Layour Sector - IV, 16th Cross Road.	a) 0 - 1350	 a) Existing drain needs to be desilted by about 0.5 m and also large quantity of vegetal growth noticed, needs to be cleared. 		-	a) 0 - 1350	After desilting drain bed needs to be provided for fulllength & width
					Existing drain needs to be widened on left hand side and new RCC wall to be constd. Existing width: 2.0 m 5.0 m & ht. 1.8 m						
K202-	Yellukunte	e Secondary Sto	orm Drain								
1	0 950) Yellukunte	Venkatapura	-	-	a) 0 - 950	 a) Existing drain needs to be desilted by about 0.5 m and also large quantity of vegetal growth noticed needs to be cleared. 		-	a) 0 - 950	After desiling drain bed needs to be provided for full length & width.
							Existing width: 2.6 m				
K203–	HSR Layo	ut Secondary S	torm Drain						Г		
1	0 1,20	0 Crompton Greaves	Outer Ring Road	a) 950 - 1200	Left Side	a) 0 - 1200	 a) Existing drain needs to be desilted by about 0.4 m and also large qty. of debris and vegetal growth noticed needs to be cleared. 	-	-	a) 0 - 1200	After desilting drain bed needs to be provided for full length & width.
					Near HSR Layout Sector - VI Existing drain needs to be widened on Left Hand side. Existing Width: 2.5 to 7.5 m and height 1.6 m		Existing Width: 2.5 m				
K204–	Madivala	Secondary Stor	m Drain								
	0 705			-	-	a) 0 - 705	 a) Existing drain needs to be desilted by about 0.3 m and also large quantity of debris needs to be cleared. Existing width: 4.5 m 			a) 0 - 705	After desilting drain bed needs to be provided for full length & width.
K205–		re Secondary S					• •	•			
1	0 525	6 Mudduram Nagar	Bismillaha Nagar			a) 0 - 525	Existing drain needs to be desilted by about 0.3 m and Further, it needs to be deepened by about 0.5 m		-	a) 0 - 525	After desilting drain bed needs to be provided for full length & width
K206–	Guruppan	apalya Seconda	ary Storm Dr	ain	l		ļ				
	0 1,24		Bovi Colony		Right Side	a) 0 - 1125		-	-	a) 200 - 1245	
		naılı			Near URS Colony. Existing drain needs to be widened on Right hand side.		Existing covered drain from (Ch. 0 - 200 m) needs to be opened at regular interval and desilted by about 0.4 m for the entire length. Further, from Ch. 200 m upto 475 m and it needs to be desilted and deepened by about 0.3 m.				After desilting drain bed needs to be provided for full length & width.
					Existing width: 2. 6 m to 5.0 m & ht. 1.8 m						
K207–	Krishnapr	a Garden Seco	ndary Storm	Drain	1		1			 	I
	0 1,22		Bannerghatta Road		Left Side	a) 0 - 1225		-	-	a) 500 - 1225	After desilting drain bed needs to be

Table - 6. Schedule For Improving the Carrying Capacity of Existing Secondary Storm Drains in Tavarekere Main Valley

SI. No.	Chaina	age (m.)	Location				Existing Storm Drain – Carrying Capacity Improvements Works									
NO.						Drain Widening		Drain Desilting & Deepening	Drain V	Vall Raising		Bed Protection				
	From	То	From	То	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks				
1	2	3	4	5	6	8	9	11	12	14	15	17				
					b) 850 - 1225	Near RBI Extn. Existing drain needs to be widened on left hand wide. Existing width: 2.6 m to 5.5 m & ht. 1.6 m. Left Side Near lake bund road. Existing drain is in natural condition and it needs to be widened on left hand side and new wall to be constructed on both sides. Existing width: 6.0 m to 7.5 m & ht. 1.8 m		Existing covered drain from (Ch. 0 - 500 m) needs to be opened at regular interval and desilted by about 0.5 m and Further, from Ch. 500 m upto 1225 m, it needs to be deepened by about 0.4 m				provided for full length & width				
20	8– Law (College Se	condary Storn	n Drain:												
1	0	425	Tilaknagar	Krishnappa Garden	-	-	a) 0 - 425	Existing covered drain from Ch. 0 - 200 m needs to be opened at regular interval, desilted by about 0.3 m and further, from Ch. 200 m it needs to be desilted and deepened by about 0.4 m upto 425 m.		-	a) 225 - 425	After desilting drain bed needs to be provided for full length & width.				
								Existing width: 2 m								

					Table - 6	. Schedule For Providing Rehabilatatio	on to the Exis	sting Secondary Storm Drains in Tavarekere Main	Valley
SI. No.	Chaina	ige (m.)	Loca	ation			Exi	sting Storm Drain – Rehabilitation Works	
						Drain Wall Reconstruction		Drain Wall Restoration	Utility
	From	То	From	То	Chainage (m.)	Remarks	Chainage (m.)) Remarks	Chainage (m.)
1	2	3	4	5	6	8	9	11	12
K20	1–Vanga	anahalli S	Secondary Sto	orm Drain			-		
1	0	1,350	Vanganahalli	Agara Tank	a) 0 - 500	Both Side New walls to be constructed for a length of 300 m on both sides for a height of about 1.8 m	a) 0 - 725	Both Side After desilting, cavities to be filled, eroded stones to be restored and pointing to be done on both sides to the existing wall to a height of about 0.5 m	
							b) 725 - 850	<u>Right Side</u> After desilting, cavities to be filled, eroded stones to be restored and pointing to be done on Right sides to the existing wall to a height of about 0.5 m	
							c) 850 - 1350	Both Side After desilting, cavities to be filled, eroded stones to be restored and pointing to be done on Both sides to the existing wall to a height of about 0.5 m	
K00		unto So	condary Storn	n Droin					
1	0	950	Yellukunte	Venkatapura	a) 0 - 500	a) <u>Both Side</u> New wall to be constructed for a length of 50 m on both sides for a height of about 1.8 m.	a) 0 - 950	Both Side After desilting, cavities to be filled, eroded stones to be restored and pointing to be done on Both sides to the existing wall to a height of about 0.5 m	
K20	3–HSR L	avout S	econdary Stor	m Drain					
1	0	1,200	Crompton Greaves	Outer Ring Road	-	-	a) 0 - 950	Both Side After desilting, cavities to be filled, eroded stones to be restored and pointing to be done on Both sides to the existing wall to a height of	
							b) 950 - 1200	about 0.5 m <u>Right Side</u> After desilting, cavities to be filled, eroded stones to be restored and	
K20	4-Madiy	ala Seco	ondary Storm	Drain				pointing to be done on Right side to the existing wall to a height of about 0.5 m	
1	0	705	Near Madivala	Hosur Road	-	-	a) 0 - 500	Both Side	
			Tank					After desilting, cavities to be filled, eroded stones to be restored and pointing to be done on both sides to the existing wall to a height of about 1.0 m.	

ity	Shifting & Other Obstruction Removals
ı.)	Remarks
	14
	_
	-
	-
	-
	-

SI. No.	Chaina	ige (m.)	Loca	tion			Exi	sting Storm Drain – Rehabilitation Works		
						Drain Wall Reconstruction		Drain Wall Restoration	Utilit	ty Shifting & Other Obstruction Removals
	From	То	From	То	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.) Remarks
1	2	3	4	5	6	8	9	11	12	14
K20	5– Tavai	rekere Se	econdary Stori	n Drain				•		
1	0	525	Mudduram Nagar	Bismillaha Nagar	-	-	a) 0 - 525	Both Sides After desilting, cavities to be filled, eroded stones to be restored and pointing to be done on both sides to the existing wall to a height of about 1.0 m.	a) 0 - 525	 a) 12 nos. of 100 mm dia. sewer outlets existing on left side b) 10 nos. of 100 mm dia. sewer outlets existing on Right side
K206	6–Gurup	panapal	ya Secondary	Storm Drain				· · · · · · · · · · · · · · · · · · ·		-
1	0	1,245	Tayappana-halli	Bovi Colony	-	-		After desilting, cavities to be filled, eroded stones to be restored and pointing to be done on Left side to the existing wall to a height of about 1.0 m.	a) 0 - 500	a) 2 nos. of 1.2 m dia. Manhole exists in the drain
K207			arden Seconda		in		-			
1	0	1,225	Bairasandra Extension	Bannerghatta Road	-	-	b) 850 - 1225	<u>Right Sides</u> After desilting, cavities to be filled, eroded stones to be restored and pointing to be done to the existing drain wall on Right side for a height of about 0.5 m. <u>Right Side</u> After desilting, cavities to be filled, eroded stones to be restored and pointing to be done to the existing drain wall on Right side for a height of about 0.5 m.	-	-
K208	– Law Co	llege Seco	ondary Storm Dr					······································		
1	0	425	Tilaknagar	Krishnappa Garden	-	-		Both Side After desilting, cavities to be filled, eroded stones to be restored and pointing to be done to the existing drain wall on Both side for a height of about 0.5 m.	-	-

Page No.

SI.	Chaina	age (m.)	Lo	ocation				Existing Storm Drain – Carrying Capa	acity Improvem	ents Works		
No.						Drain Widening		Drain Desilting & Deepening	Drair	n Wall Raising		Bed Protection
	From	То	From	То	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks
1	2	3	4	5	6	8	9	11	12	14	15	17
< 20	9–J.P. N	lagar Seo	condary Storm Dra	ain:								
1	0	1,000		Banashankari Main Road (IRR)	-		0 - 1000	Existing drain needs to be drilled by about 0.3 m, Ex-Average width 4.0 m.				
2	1,000	2,000		J.P. Nagar 2nd Phase, 80 Ft. Road	-	-	1000-2000	Existing drain needs to be drilled by about 0.4 m, Ex-Average width 6.0 m.			1000-2000	After desilting, bed protection needs to provided for full length & width.
3	2,000	3,000	J.P. Nagar 2nd Phase, 80 Ft. Road	3rd Main Road, Sarakki Dollars Colony			2000-3000	Existing drain needs to be drilled by about 0.4 m, Ex-Average width 6.0 m.			2000-3000	After desilting, bed protection needs to provided for full length & width.
4	3,000	4,000			3550-3650	Left side Near Sarakki 4th Phase, 5th Cross temple. Ex-drain alignment needs to be slightly altered, widened and new wall to be constructed. Ex-Avg Width:7.5 m, Pro-widened widh: 11.0 m & Ht: 2.2 m						After desilting, bed protection needs to provided for full length & width.
b)					3850-4000	Both sides Near Pride Apartment, Ex-drain is in natural condition and it needs to be widened on both sides and embankment needs to be formed with imported earth and dry stone revetment needs to be provided. Further, service road of 7.5 m wide needs to be formed on right hand side & guard stones to be provided at 10 m on both sides. Ex- Avg.width: 9.0 m Pro-widened width: 12.0 m and Height: 2.2 m		Existing drain needs to be drilled by about 0.5 m, Ex-Average width 10.0 m.			3000-4000	After desilting, bed protection needs to provided for full length & width.
4	3,000		3rd Main Road, Sarakki Dollars Colony									
5	4,000	5,000	Apartment	Location near Madivala tank at Kodichikkanahalli	a)4000-4150	Both sides Near Bannerghatta Road, Ex-drain is in natural condition and it needs to be widened on both sides and embankment needs to be formed with imported earth and dry stone revetment needs to be provided. Further, service road of 7.5 m wide needs to be formed on right hand side. Ex-Avg.width: 5.0 m Pro-widened width:12.5 m and Height: 2.2 m		Existing drain needs to be drilled by about 0.4 m, Ex-Average width 6.0 m.			4000-5200	After desilting, bed protection needs to provided for full length & width.
					b)4175-4400	Both sides Opp. Ranka colony, Ex-covered drain needs to be opened and widened on right side and further embankment needs to be formed with imported earth and dry stone revetment needs to be provided on both sides. Ex-Avg.width: 5.0 m Pro-widened width: 12.5 m & Ht. 2.2 m						

S		ainage (m.)	Location				Existing Storm Drain – Carrying Capa	acity Improvements Works			
N	D.				Drain Widening		Drain Desilting & Deepening	Drai	in Wall Raising		Bed Protection
	Fro	m To	From	To Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks
	2	3	4	5 6	8	9	11	12	14	15	17
				c)4400-5000	Both sides Opp. Mantri terrace Apartment, Ex-drain is in natural condition, drain alignment needs to be slightly altered, widened on both sides. Further, embankment needs to be made up with imported earth and dry stone revetment needs to be provided on both sides. Service road of 7.5 m wide needs to be formed on right hand side. Ex- Avg.width: 8.0 m Pro-widened width: 14.0 m & Ht. 2.2 m						
6	5,00	0 6,000	Location near Kodi ch Madivala tank at Kodichikkanaha Ili	hikkanahalli 5000-6000	Both side: Ex-drain reach is in natural condition and it needs to be widened and embankment needs to be formed on right side with imported earth. Further, dry stone revetment needs to be provided on both sides. Further, 7.5 m wide Service road needs to be formed on right side. Ex-Avg.width: 8.0 m Pro-widened width:12.5 m and Height: 2.2 m		Near Kodi chikkanahalli. Ex. drain needs to be desilted by about 0.5 m for the full length.			5000-6000	After desilting, bed protection needs to be provided for full length & width.
7	6,00	0 7,000	Kodi Lake ci chikkanahalli	ity layout 6000-7000	Both side: Ex-drain reach is in natural condition. Alignment of drain needs to be slightly altered, widened and embankment needs to be formed on right side with imported earth. Further, dry stone revetment needs to be provided on both sides. Further, 7.5 m wide Service road needs to be formed on right side and guard stone to be provided at 10 m interval. Ex-Avg.width: 8.0 m Pro-widened width:14.0 m and Height: 2.2 m		Near Rotary Nagar. Ex. drain needs to be desikted by about 0.5 m for the full length.			6000-7000	After desilting, bed protection needs to be provided for full length & width.
8	7,00	0 8,000	Lake city layout NGR la	ayout 7000-8000	Both side: Ex-drain reach is in natural condition. Alignment of drain needs to be slightly altered, widened and embankment needs to be formed on right side with imported earth. Further, dry stone revetment needs to be provided on both sides. Further, 7.5 m wide Service road needs to be formed on right side and guard stone to be provided at 10 m interval. Ex-Avg.width: 8.0 m Pro-widened width:14.0 m and Height: 2.2 m		Near Rotary Nagar. Ex. drain needs to be desikted by about 0.5 m for the full length.			7000-8000	After desilting, bed protection needs to be provided for full length & width.

SI.	SI. Chainage (m. No.		Location				Existing Storm Drain – Carrying Capac	city Improvem	ents Works		
No.					Drain Widening		Drain Desilting & Deepening	Drair	Wall Raising	Bed Protection	
	From	То	From To	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.)	Remarks
1	2	3	4 5	6	8	9	11	12	14	15	17
98	,000	9,500	NGR layout Bommanahalli Ir Area	dl. a)8000-830	Both side: Ex-drain reach is in natur condition. Alignment of drain needs be slightly altered, widened ar embankment needs to be formed of right side with imported earth. Further dry stone revetment needs to be provided on both sides. Further, 7.5 wide Service road needs to be formed on right side and guard stone to be provided at 10 m interva Ex-Avg.width: 8.0 m Pro-widened width:14.0 m and Height: 2.2 m	to and on er, oe m ed oe al.	Near Rotary Nagar. Ex. drain needs - to be desikted by about 0.5 m for the full length.			8000-9500	After desilting, bed protection needs to be provided for full length & width.
					Avg.width: 8.0 m Pro-widene width:12.5 m and Height: 2.2 m	al ds nd on ry ed x- ed					
				c)9000-9500	Left side: Near Hosur main road. E drain flows by the side of Hosur ma road. Drain is in natural condition of left side. It needs to be widened on left side and new RCC wall to be constd of left side. Ex-Avg.widt 6.0 m Pro-widened width:12.5 and Height: 2.2 m	in on eft on h:					
K 210	-Putter		Secondary Storm Drain:								
1 C		1,000	Shiva temple Ayodhya nagar, near sarakki nagar 5th pha lake Visveswaraiah circle	JP - se,		0 - 1000	Existing drain needs to be desilted - by about 0.5 m, Ex-Average width 2.0 m.			0-1000	After desilting, bed protection needs to be provided for full length & width.
2 1	,000	1,700	Ayodhya nagar, New Doll JP nagar 5th colony, JP nag phase, 5th phase. Visveswaraiah circle		-	1000-1700	Existing drain needs to be drilled by - about 0.4 m, Ex-Average width 6.0 m.			1000-1700	After desilting, bed protection needs to be provided for full length & width.

				Tab	le - Sche	dule For Providing Rehabilatat	ion to the Existi	ng Secondary Storm Drains in Tavarekere	Valley	
SI.	Chaina	age (m.)	Loca	ation				Existing Storm Drain – Rehabilitation Wo	orks	
No.						Drain Wall Reconstruction		Drain Wall Restoration		Utilit
	From	То	From	То	Chainage (m.)	Remarks	Chainage (m.)	Remarks	Chainage (m.	.)
1	2	3	4	5	6	8	9	11	12	
K2()9–J.P. N	lagar Se	condary Storm Drain:							
1	0	1,000	1st Main Road, 4th Block, Jayanagar	Banashankari Main road	-	-	0-1000	Both side After desilting, cavities to be filled, eroded stones to be restored and pointing to be provided for a height of 1.0 m		-
2	1,000	2,000	Banashankari Main road	J.P. Nagar 2nd Phase, 80 Ft. Road	-	-	1000-2000	Both side After desilting, cavities to be filled, eroded stones to be restored and pointing to be provided for a height of 1.0 m		-
3	2,000	3,000	-	3rd Main Road, Sarakki Dollars Colony			2000-3000	Both side After desilting, cavities to be filled, eroded stones to be restored and pointing to be provided for a height of 1.0 m		1 No
4	3,000	4,000	3rd Main Road, Sarakki Dollars Colony	Near Pride Apartment	-	-	3000-3850	Both side After desilting, cavities to be filled, eroded stones to be restored and pointing to be provided for a height of 1.0 m		15 N bed I
5	4,000	5,000	Near Pride Apartment	Location near Madivala tank at Kodichikkanahalli	-	-			4000-4500	1 No
6	5,000	6,000	Location near Madivala tank at Kodichikkanahalli	Kodi chikkanahalli						
7	6,000	7,000	Kodi chikkanahalli	Lake city layout						
8	7,000	8,000	Lake city layout	NGR layout						
9	8,000	9,000	NGR layout	Bommanahalli Indl. Area			9000-9500	<u>Right</u> <u>side:</u> Near Hosur road. After desilting, cavities to be filled, eroded stones to be restored and pointing to be provided for a height of 1.5 m		
K2 ⁻	0–Putte	nahalli S	Secondary Storm Drain:	:					-	
1	0	1,000	Shiva temple near sarakki lake	Ayodhya nagar, JP nagar 5th phase, Visveswaraiah circle	-	-	0-1000	Both side After desilting, cavities to be filled, eroded stones to be restored and pointing to be provided for a height of 1.0 m		-
2	1,000	2,000	Ayodhya nagar, JP nagar 5th phase, Visveswaraiah circle		-	-	1000-1700	Both side After desilting, cavities to be filled, eroded stones to be restored and pointing to be provided for a height of 1.0 m		2 ma level

ty Shifting & Other Obstruction Removals	
Remarks	
14	

No. of 150 mm dia w/s pipe line.

Nos. of 1.2 m dia. Manhole 1.2 m above drain d level. 1 No. of 150 mm dia sewer line exists.

No. of 150 mm dia w/s pipe line.

manholes & 1.2 m dia, 0.6 m ht. above drain bed rel.

Brief Work Programme for Remodeling of Storm Water Drains in Koramangala Valley:

- •All the works considered under remodeling project shall start simultaneously from down stream end of respective packages.
- •Vegetation growth noticed inside the drain at various locations, shall be removed in all the packages.
- •Shifting of service lines which are noticed all along the entire length of the drain at various locations, shall be taken up simultaneously in coordination with various agencies in all the packages.
- •Stoppage of sewage and other undesirable liquid wastes entry into storm drains which are noticed over the entire length, shall be taken up simultaneously in all the packages.
- •Desilting of drains, removal of debris/solid wastes etc., which are noticed over the entire length of storm drain, shall be taken up simultaneously in all the packages.
- •Widening of storm drains at the critical reaches, which are identified at various locations under the project, shall be takenup simultaneously in all the packages.
- •Culvert/bridges considered for remodeling under the project, at various locations shall be takenup simultaneously in all the packages.
- •Construction of new drains considered for minimising the flooding problems in low lying areas which are spread over at various locations shall be takenup simultaneously in all the packages.
- •Reaches of existing drain walls proposed for reconstruction/restoration under the project at various locations in the entire length of drain, shall be takenup simultaneously in all the packages.

- •Providing rehabilitation works to existing drain walls and other structures considered under the project at various locations, shall be takenup simultaneously in all the packages.
- •Construction of new drain wall / stone revetment in the reaches identified at various location under the project shall be takenup simultaneously in all the packages.
- •Providing pointing and skin reinforcement to the entire length of existing SSM storm drain walls shall be takenup simultaneously in all the packages..
- •Construction of water recharging structures and development of land along side of the drain shall be takenup simultaneously in all the packages.
- •Providing bed protection to the entire length of storm drains, shall be takenup simultaneously in all the packages.
- •Restoration of roads, cross drains and other infrastructure facilities, after completion of the works at various locations, shall be takenup simultaneously in all the packages.
- •Providing improvements works at along side of the storm drains, shall be takenup simultaneously in all the packages.
- •Periodic maintenance of storm drainage system, shall be takenup for the entire length of the drains in all the packages.

6.6 Recurrent Cost :

For maintaining the existing drains in good condition and to have maximum hydraulic carrying capacity, the drainage system has to be maintained in good condition. The general maintenance envisaged are:

1.Removal of weeds
 2.Removal of silt
 3.Removal of debris and garbage

4. Repair of civil structures

- 5.Creating public awareness
- 6.Maintenance of desilting equipment's
- 7.Manpower requirement for maintenance of the system.

Table 6.19 Indicates abstract of cost for annual operation and maintenance of the drainage system in Koramangala Valley.

Table 6.19 Abstract of Cost for Operation and Maintenance ofPrimary and Secondary Storm Water Drains in Koramangala Valley

SI. No.	Description	Amount (Rs. In lakhs)	Remarks
1	Operation & Maintenance		(Cost considered is for per annum).
1.1	Establishment Charges	17.50	
1.2	Purchase & maintenance of equipments.	17.50	
1.3	Construction of new components	52.50	
1.4	Drain Desilting works	43.75	Av. Silt depth of Min. 0.3 to 0.5 m. per year
1.5	Rehabilitation works	35.00	
1.6	Staff training, community awareness etc.	8.76	
	Total	175.01	

Abstract of Cost

for Remodeling of Primary and Secondary Storm Water Drains, Culverts/Bridges & its appurtenant works in Koramangala Valley

SI.No.	Description	Amount	
51.140.	Description	(Rs. In Lakhs)	
	Cost for Remodeling of Primary & Secondary Storm		
1	Water Drains, Construction of New Drains near low lying	10,303.32	
	areas, Formation of Service Roads etc.,		
2	Cost for Remodeling of Bridges / Culverts constructed	380.12	
2	across Primary & Secondary Storm Water Drains.	300.12	
3	Cost for shifting utility lines, footpath improvement works, barricading, traffic diversion, strengthening of diversion routes etc.	534.17	
4	Construction of Detention Ponds / Retarding Basins	150.00	
5	Construction of Wells with pumping arrangement in low lying areas	300.00	
6	Procurement of desilting machine	0.00	
7	Miscellaneous and rounding off	0.02	
8	1.Advisory, Project Management & Establishment	175.01	
0	Charges (1.5 % of Item 1 to 7)	175.01	
	2.Sub Total	11,842.65	
	3.Phase – I Construction of new drain from Koramangala		
9	80 ft. road via. Ejipura main road, ASC centre, Defence	3,129.06	
	dairy farm land upto Bellandur Tank		
10	4.Phase – II Construction of new drain along	3,237.96	
10	Koramangala 80 ft. road upto Jakkasandra layout	5,257.90	
	5.Total (Including Phase – I Proposal)	14,971.71	
	6.Total (Including Phase – II Proposal)	15,080.61	
11	Annual Operation & Maintenance Cost	175.01	
	(1.5 % of Item 1 to 7)	170.01	

CHAPTER - 7

TECHNO – ECONOMIC ANALYSIS

7.1 INTRODUCTION:

Koramangala main valley originates from Majestic Area in the centre of the city and terminates at Belandur lake near the present airport and is located south east of Bangalore.. The valley is spread in around 60 sq. km out of a total area of 225 sq. km for the Bangalore city. The total population of Bangalore city as per 2001 census is 4.5 million (the municipal limits are divided into 100 wards) and around 1.0 million people live in the 22 wards of Koramangala valley area. There are 78,800 residential and 20,137 non-residential properties in the area.

Tanks in Koramangala valley

The main tank in the valley is Belandur Lake close to the present airport. The tank is highly contaminated and hazardous for public and cattle use. Major reconditioning and rejuvenation exercise should be undertaken as part of the lake development programs. To maintain the ecosystem it is essential to clean the tank as well as divert the sewage mixing with the storm water drain by laying a sewage network. Unless continuous fresh water supply is ensured for the lakes and tanks, the habitat of the water bodies would be severely affected.

The contamination in the lakes have altered the habitat for fishes, birds and other aquatic plants; foremost being the growth of dangerous weeds like water hyacinth. The problem is further complicated by the gradual siltation over the years, creating a deep layer of artificial subsoil on the lakebed. Apart from reducing the water holding capacity of the lakes, this has completely stopped the recharge of ground water.

The Valley projects when implemented would not generate additional revenue for the principal implementing agency viz. BMP. Thus, it is a social infrastructure project attempting to restore the eco-system and relieve the citizens and residents of hardships that they are currently exposed by way of polluted drains, flooding and potential danger of public health hazards. These characteristics of the project lend itself for grants, aid and soft loans. Not withstanding the above social aspects, BMP would provide appropriate support to the project by means of initial seed amount and through budget provision to support the operation and maintenance of the SWDs once constructed.

7.2 OUT COME OF THE PROJECTS:

Sustainable ecosystem for lakes, river beds and other water bodies around river valleys; prevention and management of floods in low-lying areas and livable environ for citizens and residents.

7.3 STAKE HOLDERS OF THE PROJECT:

The project is designed to address the varying requirements of the stakeholders. They are:

INTERNAL EXTERNAL	
Bangalore Mahanagara Palike (BMP)	Citizens (residents of the area)
Bangalore Water, Sewage and Sanitation	Industries and other occupants of the area
Board (BWSSB)	
Lake Development Authority	NGOs
City Municipal Corporations	Funding Agencies
Bangalore Development Authority (BDA)	Government of Karnataka (GOK)
Karnataka Pollution Control Board	Karnataka Urban Infrastructure Development
	Finance Corporation (KUIDFC)
Elected representatives	Government of India (GOI)

7.4 STAKEHOLDER REQUIREMENTS, OUTPUTS AND BENEFITS:

Residents	No flooding Odourless and free flow of drain Green environment Separation of sewage and storm water Excellent Belandur lake and tanks Financially not inconvenienced Selected owners of land will benefit from land Value appreciation
Lake Development Authority	Water entering the lakes is as per the acceptable technical standards; Visually fresh water fish should thrive in the lakes Possibility for increased tourism
Bangalore Mahanagara Palike	One major issue resolved in line with 'citizen first' approach Good branding possibility Success can be replicated in other valley projects Publish a comprehensive book Success will enhance and ensure better flow of funds for future projects
BWSSB	One major issue resolved, rehabilitation of existing sewerage system to collect, treat and dispose the treated sewage there by abating the raw sewage flow into drains and lakes

	Diversion of sewage lines from the storm water drain network enabling proper care and maintenance of the sewerage system
GOK	Rediscover Bangalore as city of gardens, lakes etc.
GOI	A template for urban development; model to empower local governments
Funding Agency	Better chance of realizing ROI; fulfilling the purpose to assist developing countries in their efforts to develop economic and social infrastructure and stabilize their economies

7.5 **PROJECT OBJECTIVES**:

- 1. To rectify current localized flooding problems in the critical low lying areas identified in the study.
- 2. To cope with additional areas being included into the BMP administered area in terms of expansion of the storm water drain network.
- 3. To prevent polluted water getting into lakes and river beds
- 4. Encourage rain water harvesting in institutions, public parks, open grounds, etc
- 5. To improve and extend the security of services in vulnerable areas of the current BMP administered area.
- 6. To improve and protect the quality of environmental attributes including aesthetic appearance of city's environs.
- 7. To minimize cost implication on operation and maintenance of the system.
- 8. To educate the residents and citizens to be aware of the effect of dumping solid waste and other wastes into the drains (which are open by design)
- 9. To educate and enforce measures to prevent industries and commercial establishments from discharging toxic and wastewater into drains, lakes and river beds
- 10. To design, develop and implement information architecture to capture and incorporate vector and raster data to be used by multiple agencies on a shared basis. Information architecture is designed to support sustainability.

7.6 VARIABLES AND MEASUREMENTS:

It would be essential to translate the requirements in to variables that could be subject to measurement in order to monitor the performance. The table below depicts the variables and measurements and the scale as applicable for measurement.

VARIABLE	MEASURE	METRICS
Capacity of the local body of the Government (BMP)	Capacity to carry out environment management plan; ability to enforce relevant rules or regulations	Scale 1 to 5
Flexibility to accept change in terms of new approaches to environment plans	Willingness of employees and authorities of BMP and other internal stakeholders to accept professional and outcome based approaches to maintenance of ecosystem	Scale 1 to 5
Commitment to the implementation of the project	Demonstration by allocating required resources and competencies on a timely basis; enacting office orders and other instruments to facilitate implementation	Definitive
Effort to build awareness	Including a component for education and awareness in the project cost and engaging the citizens at various levels of project formulation and implementation	Definitive
Plan quality	Clarity of scope of work and definitiveness	Scale 1 to 5
Risk of flooding	Property loss, public health hazard, damages to structures	Scale 1 to 3
Regulatory policies	Permitted land uses, density controls over land use, transfer of development rights, cluster development provisions, set back requirements, site review requirements, spatial study or impact assessment requirements, building standards for flood prone area developments, financing for mitigation	Combination
Awareness	Educational awareness, voluntary real estate disclosure, flood warning systems, posting of signs to indicate flood prone areas	Definitive
Emergency planning provisions	Evacuation provisions, sheltering provisions, emergency plan provision	Scale 1 to 3
Change interventions	Willingness to train and orient personnel to achieve common and shared objectives of the local body	Scale 1 to 5

The parameters and indicators identified above have been studied in detail while preparing the detailed project report for the valley as well to develop the risk management plan. The primary risk identified for the implementation of the storm water drain project relates to coordination among various stakeholders in terms of timely execution of individual projects and schemes in order that the overall environmental condition of the valleys is restored.

7.7 Abstract of Cost

For remodeling of primary and secondary Storm Water Drains, Culverts/Bridges & its appurtenant works in Koramangala Valley:

SI. No.	Description	Amount (Rs. In Crores)
1	Cost for Remodeling of Primary & Secondary Storm Water Drains, Construction of New Drains near low lying areas, Formation of Service Roads etc.,	
2	Cost for Remodeling of Bridges / Culverts constructed across Primary & Secondary Storm Water Drains.	3.80
3	Cost for shifting utility lines, footpath improvement works, barricading, traffic diversion, strengthening of diversion routes etc.	
4	Construction of Detention Ponds / Retarding Basins	1.50
5	Construction of Wells with pumping arrangement in low lying areas	3.00
6	Procurement of desilting machine	0.00
7	Miscellaneous and rounding off	0.01
8	Advisory, Project Management & Establishment Charges (1.5 % of Item 1 to 7)	1.75
	Total	118.43
9	Annual Operating & Maintenance Charges	1.75

For the purpose of seeking external funding only the core capital expenditure of Rs. 118.43 crores is considered whereas the amount required for operation and maintenance would be funded by Bangalore Mahanagara Palike out of its budget allocations (internal resources).

The direct beneficiaries of the clean environment that would ensue upon implementation of the project are the residents spread over 22 wards in the city. The demographic details of them are provided herewith:

	Ward			Properties			
Description	No	Ward Names	Population	Residential	Non- residential		
	27	Gandhinagara	32,752	2026	2062		
	28	Chikapete	31,839	2640	4376		
	30	Sri. Krishna Rajendra Market	39,502	1298	768		
	No 27 28 30 47 48 50 Kinon 61 62 67 68 69 70 71 76 77 57 58 60 63	Sri. Dharmarayasw ami Temple	32,829	1849	3312		
	48	Sudhamanagara	42,591	1460	1841		
Koramangala Main Valley	50	Viswesvarapura	31,899	3772	399		
(K100)	61	Mavalli	39,474	1860	205		
Description No 27 28 30 47 48 48 Koramangala 50 Main Valley 61 62 67 68 69 70 71 76 77 57 58 60 63 64 65 66 22	62	Hombegowdanagara	53,648	4293	269		
	67	Koramangala	45,753	1791	340		
	68	Ejipura	40,856	6245	240		
	69	Neelasandra	51,994	2293	96		
		Shanthinagara	35,016	3115	260		
	Austin Town	39,771	1968	42			
	Jescription No 27 0 28 0 30 S 30 S 47 48 47 48 47 61 48 S 50 N 61 N 62 H 67 K 68 E 69 N 70 S 71 A 76 F 77 S 60 F 63 L 64 C 65 E 66 N 22 22	Richmond Town	36,474	5290	3024		
	77	Sampangiramanagara	32,354	2981	783		
	57	J.P. Nagara	63,594	8848	402		
	58	Jayanagara	40,113	5695	157		
Description I Image: Constraint of the second sec	60	Pattabhiramanagara	39189	4142	467		
		Lakkasandra	48,225	3372	510		
Tavarekere Valley (K200)		Gurrappanapalya	62,919	4145	140		
	65	B.T.M. Layout	51,457	5657	245		
	66	Madivala	65,760	4060	199		
		Total	9,58,009	78,800	20,137		

7.8 WARDS AND DEMOGRAPHICS OF KORAMANGALA VALLEY:

CHAPTER – 8

SUSTAINABILITY EVALUATION

8.1 LEGAL ASSESSMENT:

8.1.1 LAND ACQUISITION:

The optimal engineering solution emerging in the techno economic study would require removal of structures and houses that have sprung up along the sides of the storm water drain. There are instances where structures have been built on the side walls of the drain itself impairing scope for widening of the drains. The width of the storm water drains right through the city is greatly reduced by encroachments thus reducing the carrying capacity of the drains. There are instances of dwellings built right on top of the drains in certain areas (Yeshwantpur – beginning of Hebbal Valley drain).

Considering the prolonged process that would be necessary to enforce vacation of properties built around the storm water drain network the solution proposed avoids land acquisition on a large scale for the initiative. Where it is absolutely necessary land acquisition is envisaged considering the rehabilitation programme for people who would get displaced on account of the project implementation. The land acquisition is proposed through a process of conferring development rights (Transfer of Development Rights) by which the owner of the land who has surrendered the part of the land towards infrastructure projects would be allowed to carry out construction based on enhanced floor space index (FSI) conferred by the TDRs.

8.1.2 ENFORCEMENT MEASURES:

To deal with indiscriminate dumping of solid waste in to the storm water drains, apart from education and awareness programme, enforcement measures that act as deterrent are also required to be imposed. Based on experience in dealing with such situations it is recommended that the civic authority is empowered to deal firmly with violators of law in respect of dumping of solid waste that include construction debris, dead animals and hazardous waste material. To sustain the initiative enforcement measures are proposed against unauthorized constructions and to deal with encroachments. Further, there are many instances of evidence that in areas outside the BMP administered region, the development authorities do not enforce and adopt even rudimentary practices for planning, construction and maintenance of primary and secondary drains and also they lack resources and technical expertise to adopt best storm drain management practices. In the new areas strict enforcement of law and procedures would discourage the citizens and commercial establishments from treating storm water drains as mere sewage drains.

8.2 ESTABLISHMENT OF INSTITUTIONAL FRAME WORK:

There are multiple agencies of the Government that are directly involved and accountable to ensure that the storm water drains in Bangalore carry only storm water and nothing else (0% impurity whether liquid waste or solid waste). The agencies are Bangalore Mahanagara Palike (BMP) who is directly responsible as the implementing agency as well as the entity vested with the construction and maintenance of the drains in the city. The other agency is Bangalore Water Supply and Sanitation Board (BWSSB) whose function is to ensure that sewage is collected and conveyed to the sewage network and that it does not mix with the storm water. The current situation, however reveals that the storm water drains in Bangalore carry much of sewage as these are either directly disposed in to the drains or they overflow from the manholes and pipes located inside the storm water drains. The third agency having a stake in the upkeep of the storm water drains is the Lake Development Authority (LDA) whose mandate is to keep the lakes on the down streams to be pollution free.

The fourth agency involved in the issue is Bangalore Development Authority (BDA) who allots and plans residential and commercial sites in and around Bangalore. When sites are allotted without considering the existence of water and sanitation networks, citizens have little choice in the disposal of waste and most often they find their way in to the storm water drains.

Institution	Primary Role	Impact on SWDs	Area of cooperation	Severity of non- cooperati on/ inaction
BMP	Planning, Development, Financing, Construction, operation and maintenance	Carrying capacity, flooding, pollution of the environment	Timely execution of projects Educating the citizens on proper solid waste disposal	Medium to High
BWSSB	Collection, Conveyance and disposal of sewerage	Mixing of sewage with storm water polluting the drains, clogging, spreading odour and finally polluting the lakes and water bodies	Integrated planning and removal of sewage network components form the storm water drains	High
BDA	Land Use Planning and allotment of sites	Residents forced to discharge sewage in to SWDs where sewage networks have not been planned but construction permits given	Coordination with BMP/BWSSB to create the infrastructure in a coordinated manner while allotting sites	Medium
LDA	Upkeep of lakes and water bodies	Closing of entry points in to lakes due to polluted water entering the lakes thus making the environment around the lake unhygienic (lake itself may be pure of sewage and other contaminations)	Participate in planning and development of schemes to treat the unclean water before entry in to the lakes	Medium

To realize the outcome of 100% pure flow of storm water in the drains all the above agencies need to participate and implement plans in an integrated and coordinated manner. The Government of Karnataka represented by the Urban Development Department has constituted an inter-institutional committee with members drawn from the following to give shape to the proposal for coordination and effective management of the storm water drain initiatives:

- Commissioner, BMP Chairman of the Committee
- Secretary, Urban Development, GOK
- Chairman, BWSSB
- Chairman, BDA
- Chairman, LDA

Another critical institutional aspect for the storm water drain projects is the need to establish a dedicated project management cell within BMP to undertake such a massive and citizen sensitive project.

8.3 RATIONALE FOR A PROJECT MANAGEMENT UNIT:

There is a need for an organization which could handle joint projects among stakeholders cutting across various government entities. Such an organization should address the needs of the city – Greater Bangalore – a Techno polis, fast emerging as an intelligent city. The informal arrangement that was started a few years back in the form of BATF (Bangalore Agenda Task Force) needs to be formalized now by establishing a new organization that would focus on delivering citizen services by concentrating on urban infrastructure planning and execution. A strategic plan for the city development in terms of urban infrastructure shall be developed by the proposed organization along with a clear road map with milestones to translate the strategy to actions.

To execute a project with multiplicity of stakeholders profound project management skills and inter-disciplinary approaches are essential. In order to effectively implement, monitor and control the schemes envisaged under the storm water drain initiative it is strongly recommended that a Project Management Unit (PMU) as an exclusive entity responsible for storm water projects be established. Funding agencies stipulate evidence of professional management skills and best practices for sanction and disbursal of funds for such of these schemes. BMP readily accepted the recommendation and it has been suggested that PMU be established as part of BMP functioning independently to carry out the storm water drain projects in accordance with JNNURM guidelines and reforms agenda agreed among the stakeholders.

It has been observed in many infrastructure project implementation schemes that cost and time overruns could have been avoided if a separate dedicated unit or cell were vested with the authority and powers to deal with the project implementation cycle. There has been a significant improvement in performance of dedicated units wherein policy, implementation and regulation are clearly isolated and delineated. It is proposed that PMU functions as an execution agency of policies framed by BMP / Government and thus focusing on deliverables in terms of performance. Weak institutional mechanism coupled with lack of application of contracting skills affect the implementation of large infrastructure schemes. Channeling right competencies required for handling such schemes is vital but found to be non-existent under bundled institutional setups created around budgetary focus for expenditure monitoring. Performance measurement in terms of timely completion and construction as per requirements and specifications, are few aspects that are not given due importance under current functioning of these institutions.

Projects executed as part of many government schemes are susceptible to delays on account of slow decision making process and sometimes by the application of bureaucratic procedures. Focused attention and clearly defined roles among implementation agencies are seldom noticed in routine schemes funded either through budgetary allocations or through external funding mechanisms. Systems of the government remain inflexible and unable to cope up and address the needs of the funding agencies and contractors to deal effectively with emerging situations, uncertainties and risks.

While establishing the PMU, its governance structure, its inter-play with various internal and external stakeholders and its role, responsibility, powers, authority and liabilities need to be defined. More importantly the framework should highlight on the organization structure, the profile and attributes of the Chief Executive Officer and outsourcing mechanisms to pool resources. The recommendation would lay the basis for the establishment and operation of the PMU as well as its future role in respect of similar large urban infrastructure projects in Bangalore city.

The likelihood of achieving the project outcomes as per the specifications and within the timeframe planned would be greatly enhanced if the PMU is mandated to design, develop, implement and oversee the operation and maintenance phases. Performance orientation and achievement of measurable goals would be the hallmark of PMU and the knowledge gained should also be gradually transferred to its contractors, outsource partners and stakeholders.

PMU should be designed and structured in such a way that it is independent and allowed to function as an autonomous unit and be part of BMP. Performance measures of PMU shall be agreed between the designated state government agency and PMU and also in consultation with major stakeholders like BMP, BWSSB, LDA, BDA, CMCs etc. PMU should be evaluated based on its efficiency and effectiveness parameters and evolve initiatives and projects that are economically viable and politically sustainable. PMU could have its resources picked up from among various constituents of the government apart from external professional pool. An organization structure that would primarily meet with the engineering and enforcement aspects of the project is developed and presented here. The administrative functions like land acquisition and arrangement of finance are to be dealt with by the inter-institutional committee recommended as part of the reforms agenda.

Organization structure of the Project Management Unit (PMU) for implementing the remodeling of storm water drain network in Bangalore City.

8.4 EDUCATION AND AWARENESS PROGRAMME:

Awareness program as a tool is designed to address issues and propagate messages relevant to segmented consumers in respect of maintaining the environment to defined standards. The messages would include the types of technology, sources (availability), behavior pattern, ways to prevent dumping of waste, significance of clean environment with respect to health and safety and impact (social & economic) of not adhering to recommended rules and procedures.

Communication in the form of scientific intervention is critical to educate the economically weaker sections of the society, policy makers from health department, local bodies in charge of maintaining the environment around the storm water drains, lakes and other water bodies. They need to be aware of the systems governing safe environment, clean air and lakes with fresh water allowing fish to thrive. Unclean environment and the resultant odour and mosquito infestation affect their livelihood and also their health. The awareness in respect of impact of letting out wastewater without treatment on the environment and personal health are equally important. The communication program aims to create awareness on the ill-effects of having unclean storm water drain and water bodies and living in the midst of polluted environment caused by letting out un-treated wastewater and solid waste in to the open. It has been established through studies that more than 60% of the diseases caused are water borne and by effectively controlling sections of the society to seek and resort to safe disposal of both solid and liquid waste substantial savings would be made in the outlays currently made by the health department to address the public-health concerns. Orientation of the society through communication is an effective tool to achieve the desired results concerning behavior of citizens. They would emulate what is told if they are convinced of the impact in their lives. Practical demonstrations with test reports and certificates from authorized agencies entwined with communications program for spreading the message would achieve the desired result. Messages propagated in the local lingua and through personalities accepted by the community would have a significant impact in terms of acceptability and remembrance.

8.5 OBJECTIVES OF THE INTERVENTION:

The segmented target groups for this program are primarily economically weaker sections of the society, policy makers from health sector, local bodies in charge of wastewater and solid waste disposal, commercial establishments in the Hebbal Valley apart from potential polluting industrial units. For them the objectives are to:

- Introduce awareness on disposal pattern of waste and environmental factors associated with water and wastewater; especially focusing on organic matter in the form of bacteria, viruses and the like.
- Develop and administer awareness programs and education material in simple forms for school children.
- For the local bodies' material containing information on availability of cost effective technologies, transportation, quality control, costs, impact on environment would be developed and disseminated.
- Structure media programs along with direct campaigns to instill the awareness program.
- Sustain the message and effective follow up with repeated contacts and innovative schemes.
- Craft slide presentations, printable handouts, posters, and short movies for effective communication. The material prepared and administered would be in local language and simple to understand.

8.6 TARGET GROUP(S) WITH LOCATION SPECIFIC INFORMATION:

Bangalore City consists of 100 wards and the total population in the four valleys is around 4,500,000. The target group for the communications program will comprise segmented sections of weaker sections, schools (primary, middle and higher), and policy makers from health sector and local bodies in charge of storm ware drains, sanitation and lake maintenance. These would be chosen from the wards of the valleys. The target audience would be graded into government and the private sector comprising the policy makers, influencers, decision makers and implementing authorities. Citizens would be targeted through a network of non-government organizations (NGOs) who have established direct contact at various levels of communities.

8.7 DURATION OF THE INTERVENTION:

It is estimated that the intervention would be completed within a period of 36 months from commencement. There would be an intensive planning and requirement analysis process in the initial three months period formulating plans for implementing the awareness and communications program. Review and monitoring activities would form part of the intervention schedule to make an effective impact of the awareness program. The intervention would be administered both during the construction (remodeling of the drains) and the operation phase.

8.8 JUSTIFICATION FOR UNDERTAKING THE PROPOSED INTERVENTION:

A large engineering project with an outlay over Rs 7000 million without an education and awareness component is not likely to produce sustainable results. One of the key assumptions of the storm ware project is that raw sewage will not enter the drains once remodeling is complete. This assumption can not be satisfied through and engineering intervention alone. People have to be educated and made aware of the importance of sustaining the eco-system in order to protect the environment. If practices that are currently in vogue continues after the remodeling the purpose of the project initiative would have been completely missed. In order to realize the core objectives the proposed intervention is viewed as absolutely necessary. A program of Rs 30 million administered over a period of 36 months is likely to protect the investments made to the tune of Rs 7000 million. Enforcement alone is not likely to result in achieving the desired results. By directly engaging the segmented citizens the likelihood of protecting the investment and the maintenance of the eco-system of Hebbal Valley would be greatly enhanced.

8.9 APPROACH & METHODOLOGY:

Basic research in terms of segmentation of communities in terms of language, income level, literacy and vocation would be conducted in the first three months to gather data which will enable development of suitable programs for spreading the awareness. It is proposed to conduct an analysis and requirement planning to identify the areas where communication channels for the segmented target groups should be established and improved. The identification process would also focus on designing the content of the communication and awareness program suited to the target groups identified in terms of simplicity, vernacular and easy to comprehend and relate to real life situations. In case of school children curriculum on environmental health dealing with aspects of safe disposal of waste and keeping the environment clean and health aspects would be designed and promoted to authorities in the educational sector. Similarly, biological effects of living in unclean and polluted environ and methods to prevent unsafe methods of disposal of waste would be packaged in program for the health sector department. Impact of use of safe environment around the storm water drains on the spending by the health department would be clearly captured and popularized. Pilot schemes with focus target groups would be developed and administered. Lessons from the pilot schemes would be analyzed and evaluated for use in subsequent interventions in other community development programs as part of the education and awareness intervention.

8.10 DESCRIPTION OF THE TARGET AREA, TARGET GROUP (S) ALONG WITH THEIR CURRENT SOCIOECONOMIC STATUS:

The target area comprises four valleys (Challaghatta, Hebbal, Koramangala & Vrishabavathi) spread over 100 municipal corporation wards. The socioeconomic conditions of people living in the target area and in the target groups are quite mixed but predominantly economically weaker sections. For the target groups and in fact for all consumers, health costs arising out of water borne diseases are proving to be a great burden and continuously rising. Problems of flooding in the low lying areas due to clogging of drains with silt and waste have been witnessed in the past. Residents, commercial establishments and industries today are unaware of the ill-effects of throwing waste and discharging sewage in to storm water drains.

8.11 RELEVANCE OF THE INTERVENTION TO THE WORK ALREADY GOING ON:

A number of NGOs today interact with communities in regard to various socioeconomic issues affecting the lives of the society. The proposed program would be designed in such a way to take advantage of the existing communication channels and also the network of NGOs to effectively promote the campaign. The emphasis would be to prevention of dumping of solid waste in to the storm water drains. The current programme would be suitably intermixed with ongoing communication programmes that are underway so that the citizens do not feel another massive programme thrust on them.

8.12 UTILISATION OF THE EXPECTED OUTCOME FROM THE INTERVENTION AND ITS BENEFICIARIES:

The outcomes expected from this intervention are two fold: firstly, it is to ensure acceptance of the program by the community in terms of change in practices for disposal of waste; effectives to be measured in terms of creating and sustaining a clean and green environment around the storm ware drains in the Hebbal Valley. Opportunities for employment creation within the local community for operation and maintenance of facilities would also be explored and established.

8.13 RISK ASSESSMENT:

Internal risks come mainly from three sources: the project, the organizations involved, and the relationships among partners. Most projects suffer at least temporarily, from a deficient project structure: many are launched even though objectives are not clear, a business case had not been completed, and milestones were only vaguely defined, if defined at all. On the organizational side, lack of project control mechanisms is the factor that most impede many projects. Finally, risks associated with the relationships among partners has been the major source of concern present in all projects, lack of definition of role and responsibility as the most important problem for project implementation.

The risks associated with the storm water drain projects fall in to three categories:

- Multiple stakeholder coordination risk during execution of work
- Project risk
- Acquisition of land and removal of encroachments while widening the drains

Continuing discharge of sewerage in to the drains – BWSSB is expected to draw up plans for connecting the households that now discharge the sewerage direct to the drains. Coordination and integration of BWSSB's plans with that of BMP alone will ensure the drains carrying the storm water of acceptable quality

Indiscriminate dumping of solid waste and debris in to the drains is another aspect exposed to risk. BMP has earmarked areas in each of the wards in the city where construction debris could be dumped. The exercise has begun and once implemented would greatly reduce the amount of debris being dumped in to the storm water drains. This combined with proper education and awareness programmes would help prevention of debris getting in to the drains.

Risk	Stakeholders	Severity of risk	Solution
Acquisition of land	BMP, Government of Karnataka	Medium	A combination of enforcement and rehabilitation measures is required to notify the affected people and provide alternate arrangements for living
Removal of encroachments	BMP, BDA, Government of Karnataka	Medium	Legislation followed by proper enforcement; affected people to be considered for housing under basic services to urban poor plan

8.14 RISK MANAGEMENT:

Internal risks associated with storm water drain projects in the four valleys of Bangalore city with suggested measures to address the risks.

Risks associated with the project itself	<i>Characteristics of clients/users of the service:</i> resistance to change, lack of involvement, inadequate education level, difficulties in communicating, unrealistic expectations. (to overcome BMP is seeking citizen participation through ward committees and other for a)
	Scope of the project: universality or specificity of the service, number of partners involved, number of clients, size of budget. (contract documentation being revamped to define the role and responsibility very clearly)
	Complexity of the project: especially organizational and technological complexity. (consultant would evaluate various assumptions made in the design and detailed engineering)
	Definition and structure of the project : unclear objectives, ill-defined specifications and functional requirements, changes in the scope or the reach of the project, difficulties in integrating data or processes. (flexibility to accommodate changes from contractors)
Organizational risks	<i>Lack of resources:</i> uncertainty of funding, inadequate resources, lack of expertise in complex resource management.
	Project team competencies: lack of experience, expertise, stability, and communication skills. (it is proposed to establish a PMU with requisite skills and experience)
	Management strategy : inadequate or inappropriate organizational support and control, absence of a champion, lack of leadership, unavailability of tested management tools and processes. (inter-institutional committee proposed to deal with policy level decisions)
	Technological know-how: absence of an adequate technological infrastructure and of in-house technological competencies. (Competencies being upgraded).
Relationship risks	<i>Form of collaboration:</i> inadequate or inappropriate type of agreement, misunderstandings regarding the content of the agreement; inappropriate selection of partners. (all contractual frameworks to define the role, responsibility and liability of various parties clearly)
	Collaborative process: problems occurring with coordination, communications, inertia, dependency, mistrust, lack of consensus or involvement. (change management proposed)

CHAPTER 9

FINANCIAL AND OPERATING PLAN

The storm water drain valley projects when implemented would not generate additional revenue for the principal implementing agency viz. BMP. Thus, it is a social infrastructure project attempting to restore the eco-system and relieve the citizens and residents of hardships that they are currently exposed by way of polluted drains, flooding and potential danger of public health hazards. These characteristics of the project lend itself for grants, aid and soft loans. Not withstanding the above social aspects, BMP would provide appropriate support to the project by means of initial seed amount and through budget provision to support the operation and maintenance of the SWDs once constructed.

However, BMP is examining the possibility of levying a one time collection charges from property owners in the city towards partial recovery of capital cost that is estimated for the remodeling of the storm water drains. It is under consideration to recover at the maximum 40% of the capital cost through such cess. The recovery would be made over a period of five years from the property owners. This scheme is subject to willingness and affordability criteria of the residents and the approval of the BMP council and the State Government.

The revenue accrual on account of the proposed cess is summarized below – a total collection of Rs 302.50 Crores from the years 2007-08 till 2011-12.

Storm Water Drain	45.00	55.00	65.00	67.50	70.00
Cess					

– Project Repor

Estimated Capital Costs

Cost in Rs Crores

Name of	Capital	Years	Years										
Component	Cost as per DPR	2006-07 2007-08		2008-09	2009-10	2010-11	2011-12						
Storm Water Drain Network													
Challaghatta Valley	124.83	49.93	49.93	24.97	-	-	-						
Hebbal Valley	190.13	76.05	76.05	38.03	-	-	-						
Koramangala Valley	118.43	47.37	47.37	23.69	-	-	-						
Vrishabhavathi valley	245.54	98.22	98.22	49.11	-	-	-						
Sub-total for four valleys	678.93	271.57	271.57	135.79	0.00	0.00	0.00						

Funding pattern for Storm Water Drain Valley Projects (Rs Crores)

Funding Pattern	Total	2006-07	2007-08	2008-09
GOI Grant 35%	237.63	95.05	95.05	47.53
GOK Grant 15 %	101.84	40.74	40.74	20.37
BMP financing	339.47	135.79	135.79	67.89
Total	678.93	271.57	271.57	135.79

The funding pattern is based on the JNNURM guidelines.

The fund flow statement for BMP for the next 10 years has been developed taking into consideration the financing of major infrastructure projects under JNNURM stream and non-JNNURM stream. These projections are under review by SBI Caps who are carrying out a due diligence exercise as well as the evaluation of viability for seeking external funding (viability gap after grant funding). The viability gap is proposed to be funded by direct loans as well as tax free municipal bonds that is under active consideration of both the State and the Central governments.

The basic assumptions in the financial projections are:

The property tax collection would move from Rs 320 crores in the year 2006-07 to Rs 750 Crores in the year 2015-16; this is being achieved with reforms in the property tax collection mechanism aided by GIS system for all the 100 municipal wards of BMP. The collection efficiency is estimated to go up to 85% by the year 2015-16 (the efficiency currently is 60%).

The revenue accretion from the State Government is estimated to move up from Rs 121 Crores in the year 2006-07 to Rs 302 Crores in the year 2015-16. This is based on the devolution criteria and guidelines provided by the Urban Development Department of the Government of Karnataka

Levy of storm water drain cess as a one time fee to be collected from all property owners – 10% cess on property tax paid – this would result in revenue accretion of Rs 302.50 crores over a period of 5 years

The total capital expenditure programme envisaged by BMP under JNNURM is approximately Rs 8000 crores including the basic services to urban poor component. Out of this BMP needs to mobilize Rs 4000 crores. It is assumed that BMP would arrange for term loans to the extent of Rs 1000 crores and the balance Rs 3000 crores would be obtained through issuing a series of tax free municipal bonds

Government of Karnataka would provide guarantees for the issue of municipal bonds to the extent of viability gap identified by the financial advisor

The cost of the municipal bonds is taken as 7% per annum and the bonds would be redeemed after 7 years period

The interest rate for future loans is assumed as 7.5 % per annum

The projections show a deficit in the terminal years when the bonds get redeemed; BMP proposes to identify additional sources of revenue from the year 2008-09 to improve its financial position in order to fund capital expenditure as well as honour financial commitments

The projections based on the assumptions are as follows:

Remodeling of Primary & Secondary Strom Water Drains in Bangalore City - Project Repor

Projected Funds Flow Statement for BMP

(Rs. In Crores)

REVENUE	2005-06	2006-07	2007-08	2008-09	2009-10	2010-11	2011-12	2012-13	2013-14	2014-15	2015-16
REVENUE RECEIPTS											
Tax Revenues											
Property Tax	320.00	400.00	450.00	550.00	650.00	675.00	700.00	725.00	750.00	750.00	750.00
Advertisement Taxes	15.47	16.86	18.55	20.40	22.44	24.68	27.15	29.87	32.86	36.14	39.75
Surcharge on Stamp Duty	15.00	20.00	22.00	24.20	26.62	29.28	32.21	35.43	38.97	42.87	47.16
	350.47	436.86	490.55	594.60	699.06	728.97	759.36	790.30	821.83	829.01	836.91

Non Tax Revenues											
Grants											
SFC Grants	110.00	131.00	149.00	182.00	219.00	231.00	240.00	257.00	257.00	257.00	257.00
Other Grants:	11.00										
Grants towards electricity		25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00
Incentivisation		10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Twelfth Finance Commission		10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
	121.00	176.00	194.00	227.00	264.00	276.00	285.00	302.00	302.00	302.00	302.00

Service Charges											
Infrastructure Cess / User charges	20.00	-	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
SWM Cess	30.00	30.00	30.00	30.00	30.00	30.00	30.00	36.00	36.00	36.00	36.00
Service chgs on Tax exempt Props	15.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00
	65.00	55.00	75.00	75.00	75.00	75.00	75.00	81.00	81.00	81.00	81.00
Fees & Fines											
Building License Fees	5.25	11.60	11.60	11.60	11.60	11.60	11.60	12.76	12.76	12.76	12.76
Compounding Fees	4.50	10.00	11.00	12.10	13.31	14.64	16.11	17.72	19.49	21.44	23.58
Development Charges	3.00	8.86	9.75	10.72	11.79	12.97	14.27	15.70	17.27	18.99	20.89
Ground Rent	3.06	8.24	9.06	9.97	10.97	12.06	13.27	14.60	16.06	17.66	19.43
Road Cutting Charges	6.02	0.45	0.50	0.54	0.60	0.66	0.72	0.80	0.88	0.96	1.06
Khata Transfer & Extract fees	8.94	11.35	12.49	13.73	15.11	16.62	18.28	20.11	22.12	24.33	26.76
Hotel / Power License Fees	3.50	5.00	5.50	6.05	6.66	7.32	8.05	8.86	9.74	10.72	11.79
Fee for Quality Control	-	5.00	5.50	6.05	6.66	7.32	8.05	8.86	9.74	10.72	11.79
Others	44.94	24.86	27.35	30.08	33.09	36.40	40.04	44.04	48.45	53.29	58.62
	79.21	85.36	92.74	100.85	109.77	119.59	130.39	143.43	156.50	170.87	186.68

Receipts from Corporation Properties											
Rent from Shops /Leased	9.31	23.50	23.50	23.50	23.50	23.50	23.50	25.85	25.85	25.85	25.85
Others	1.08	0.81	0.85	0.89	0.94	0.98	1.03	1.09	1.14	1.20	1.26
	10.39	24.31	24.35	24.39	24.44	24.48	24.53	26.94	26.99	27.05	27.11
	•										
Total Revenue Receipts	626.07	777.53	876.63	1,021.8	1,172.2	1,224.0 4	1,274.2	1,343.6 7	1,388.3 2	1,409.9 3	1,433.7 0

REVENUE	2005-06	2006-07	2007-08	2008-09	2009-10	2010-11	2011-12	2012-13	2013-14	2014-15	2015-16
Capital Grants											
MOU Grants	81.90	-	-	-	-	-	-	-	-	-	-
JNNURM Funds	-	434.04	902.54	929.64	666.75	603.75	457.75		-	-	-
	81.90	434.04	902.54	929.64	666.75	603.75	457.75	-	-	-	-
Long Term Loans											
Loans from Financial Institutions for JNNURM matching grants	-	108.06	224.70	231.45	166.00	150.31	113.96	-	-	-	-
Bonds for JNNURM matching grants		325.98	677.84	698.20	500.75	453.44	343.79	-	-	-	-
Loans from Financial Institutions others	545.53	396.60	-	-	-	-	-	-	-	-	-
	545.53	830.64	902.54	929.65	666.75	603.75	457.75	-	-	-	-
Others											
Improvement Charges	30.00	30.00	30.00	30.00	30.00	30.00	36.00	36.00	36.00	36.00	36.00
Bldg Deviation Regularisation	100.00	10.00	100.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Sale of Properties	16.25	21.50	21.50	21.50	21.50	21.50	21.50	21.50	21.50	21.50	21.50
	146.25	61.50	151.50	61.50	61.50	61.50	67.50	67.50	67.50	67.50	67.50

|--|

Other Receipts

Cesses collected on Property Tax	108.80	136.00	153.00	187.00	221.00	229.50	238.00	246.50	255.00	255.00	255.00
Storm Water Drain Cess			45.00	55.00	65.00	67.50	70.00				
Deposits, Statutory Deductions etc	52.45	62.14	143.48	143.48	143.48	143.48	143.48	20.00	20.00	20.00	20.00
	161.25	198.14	341.48	385.48	429.48	440.48	451.48	266.50	275.00	275.00	275.00
TOTAL RECEIPTS	1,561.0 0	2,301.8 5	3,174.6 8	3,328.1 1	2,996.7 5	2,933.5 2	2,708.7 6	1,677.6 7	1,730.8 2	1,752.4 3	1,776.2 0

EXPENDITURE	2005-06	2006-07	2007-08	2008-09	2009-10	2010-11	2011-12	2012-13	2013-14	2014-15	2015-16
Administrative Expenses											
Salaries											
Pay of Officers	6.26	5.81	6.39	7.03	7.73	8.51	9.36	10.29	11.32	12.45	13.70
Pay of Establishment	62.37	72.74	80.01	88.02	96.82	106.50	117.15	128.86	141.75	155.92	171.52
Allowances	63.00	64.18	70.60	77.66	85.42	93.97	103.36	113.70	125.07	137.58	151.33
Pension / Gratuity	30.50	34.50	37.95	41.75	45.92	50.51	55.56	61.12	67.23	73.95	81.35
	162.13	177.23	194.95	214.45	235.89	259.48	285.43	313.97	345.37	379.91	417.90
Advertisement & Publicity	2.12	2.33	2.80	3.36	4.03	4.83	5.80	6.96	8.35	3.08	3.69
Printing & Stationery	3.25	1.58	1.74	1.91	2.10	2.31	2.54	2.80	3.08	3.39	3.73
Telephone Charges	0.84	1.19	1.25	1.31	1.38	1.45	1.52	1.59	1.67	1.76	1.85
Electricity Charges	30.54	25.60	26.88	28.22	29.64	31.12	32.67	34.31	36.02	37.82	39.71
Water Charges	4.30	2.20	2.31	2.43	2.55	2.67	2.81	2.95	3.10	3.25	3.41
Council related Expenditure	3.90	5.49	5.76	6.05	6.36	6.67	7.01	7.36	7.72	8.11	8.52
Office Infrastructure	3.98	4.61	4.84	5.08	5.34	5.60	5.88	6.18	6.49	6.81	7.15
Vehicles - M & R Cost	10.03	10.25	10.76	11.30	11.87	12.46	13.08	13.74	14.42	15.14	15.90
Other Expenses	93.63	65.66	68.95	72.40	76.02	79.82	83.81	88.00	92.40	97.02	101.87

											,
	152.59	118.91	125.29	132.06	139.26	146.93	155.12	163.87	173.25	176.38	185.83
Welfare Activities		-			-		-			-	
18% Allocation	14.53	27.76	27.76	27.76	27.76	27.76	27.76	27.76	27.76	27.76	27.76
Backward Classes & Minority Welfare	2.58	11.35	11.35	11.35	11.35	11.35	11.35	11.35	11.35	11.35	11.35
Women Welfare	6.48	4.99	4.99	4.99	4.99	4.99	4.99	4.99	4.99	4.99	4.99
General	0.70	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
	24.29	44.90	44.90	44.90	44.90	44.90	44.90	44.90	44.90	44.90	44.90
Educational Promotion Activities	5										
18% allocation	2.02	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
General	3.47	7.20	7.78	7.78	7.78	7.78	7.78	7.78	7.78	7.78	7.78
Sports Activities	1.55	1.07	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52
	7.04	8.47	9.50	9.50	9.50	9.50	9.50	9.50	9.50	9.50	9.50
								-	-		

Health & Sanitation	-	•								•	
Cleaning of Garbage	40.00	50.00	52.50	55.13	57.88	60.78	63.81	67.00	70.36	73.87	77.57
Decentralised Composting	0.10	0.10	0.11	0.11	0.12	0.12	0.13	0.13	0.14	0.15	0.16
Street Dog Management	0.85	1.50	1.58	1.65	1.74	1.82	1.91	2.01	2.11	2.22	2.33
Tipping Fees	2.50	2.00	2.10	2.21	2.32	2.43	2.55	2.68	2.81	2.95	3.10
Others	3.95	15.61	16.39	17.21	18.07	18.97	19.92	20.92	21.96	23.06	24.22
	47.40	69.21	72.67	76.30	80.12	84.13	88.33	92.75	97.39	102.25	107.37
EXPENDITURE	2005-06	2006-07	2007-08	2008-09	2009-10	2010-11	2011-12	2012-13	2013-14	2014-15	2015-16

Financial Expenses

Total Revenue Expenditure	469.96	560.33	657.99	809.42	935.23	1,043.9 1	1,138.6 2	1,210.2 7	1,234.5 5	1,195.8 1	1,139.5 0
	· 										
	76.51	141.61	210.68	332.20	425.55	498.97	555.34	585.28	564.14	482.87	374.00
Interest on Municipal Bonds	-	21.00	63.00	112.00	147.00	178.50	199.50	199.50	199.50	178.50	136.50
Interest on Loans	76.51	120.61	147.68	220.20	278.55	320.47	355.84	385.78	364.64	304.37	237.50

CAPITAL EXPENDITURE

Public Works											
Solid Waste Management	7.90	6.60	6.93	7.28	7.64	8.02	8.42	8.84	9.29	9.75	10.24
Engineering - Zonal	462.44	383.19	25.00	26.25	27.56	28.94	30.39	31.91	33.50	35.18	36.94
Multi Purpose Engg Divisions	33.77	29.55	20.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Projects	138.27										
Infrastructure	134.37										
Comprehensive Development Plan	43.60										
Storm Water Drain Network											
Challaghatta Valley		49.93	49.93	24.97	-	-	-	-	-	-	-
Hebbal Valley		76.05	76.05	38.03	-	-	-	-	-	-	-
Koramangala Valley		47.37	47.37	23.69	-	-	-	-	-	-	-
Vrishabhavathi valley		98.22	98.22	49.11	-	-	-	-	-	-	-
Sub-total for four valleys		271.57	271.57	135.79	-	-	-	-	-	-	-
Extension work into CMC areas		86.00	106.00	106.00	106.00	106.00	-	-	-	-	-

Environment Management										
Tanks	15.00	17.00	17.00	17.00	17.00	17.00	-	-	-	-
Parks	15.00	8.00	8.00	7.00	6.00	6.00	-	-	-	-
Incinerator, Crematorium and Abattoirs	9.00	16.00	16.00	17.00	17.00	16.00	-	-	-	-
Tree Plantation and Nurseries	1.50	1.50	1.50	1.50	1.50	1.50	-	-	-	-
Urban Renewal										
Decongestion		30.00	30.00	30.00	30.00	30.00	-	-	-	-
Development of CBD		20.00	20.00	20.00	20.00	20.00	-	-	-	-
Road Network										
Arterial and Sub arterial roads	125.00	150.00	400.00	325.00	250.00	250.00	-	-	-	-
* Includes IT/BT, Flood damaged roads										
Grade Separators	120.00	200.00	150.00	150.00	200.00	80.00	-	-	-	-
Pedestrian subways	5.00	15.00	15.00	15.00	15.00	10.00	-	-	-	-
Foot Over Bridges	-	5.00	5.00	5.00	5.00	5.00	-	-	-	-
Foot Path improvements	-	20.00	20.00	20.00	20.00	20.00	-	-	-	-
Internal Core Ring Road		200.00	200.00		-	-	-	-	-	-

	120.00			I	1					
	120.00	180.00	180.00	110.00	110.00	100.00	-	-	-	-
	-	175.00	70.00	-	-	-	-	-	-	-
	-	40.00	35.00	60.00	60.00	60.00	-	-	-	-
-	100.00	350.00	450.00	450.00	350.00	300.00	-	-	-	-
14.91	43.85									
23.72	34.40	42.40	42.40	42.40	42.40	42.40	42.40	42.40	42.40	42.40
56.84	28.72	30.16	31.66	33.25	34.91	36.65	38.49	40.41	42.43	44.55
915.82	1,665.9 6	2,201.1 3	2,112.6 6	1,454.3 5	1,331.7 7	1,043.3 7	131.64	135.60	139.76	144.13
es										
70.18	112.46	160.59	216.36	257.10	280.35	289.54	207.18	146.27	108.88	78.63
-	-	-	-	-	-	-	-	300.00	600.00	700.00
70.18	112.46	160.59	216.36	257.10	280.35	289.54	207.18	446.27	708.88	778.63
986.00	1,778.4 2	2,361.7 2	2,329.0 3	1,711.4 5	1,612.1 2	1,332.9 1	338.82	581.88	848.64	922.76
			1	1	1					
	14.91 23.72 56.84 915.82 es 70.18 - 70.18	- 100.00 14.91 43.85 23.72 34.40 56.84 28.72 915.82 1,665.9 6 6 70.18 112.46 - - 70.18 112.46 - - 70.18 112.46	40.00 100.00 350.00 14.91 43.85 23.72 34.40 42.40 56.84 28.72 30.16 915.82 1,665.9 2,201.1 6 3 70.18 112.46 160.59 70.18 112.46 160.59 70.18 112.46 160.59	Image: Mark and M	Image: Mark Mark Mark Mark Mark Mark Mark Mark	Image: series Image: s	Image: Marking	Image: set of the set	Image: set of the set	Image: state in the s

Other Payments											
Repayment of Cesses - Current	27.84	36.00	114.75	140.25	165.75	172.13	178.50	184.88	191.25	191.25	191.25
Repayment of Cesses - Arrears	-	32.73	-	-	-	-	-	-	-	-	-
Repayment of Statutory Deductions / Deposits	41.52	45.48	43.04	43.04	100.43	100.43	100.43	14.00	14.00	14.00	14.00
	69.36	114.21	157.79	183.29	266.18	272.56	278.93	198.88	205.25	205.25	205.25
			1		1			1		1	
TOTAL PAYMENTS	1,525.3 2	2,452.9 7	3,177.5 1	3,321.7 4	2,912.8 6	2,928.5 9	2,750.4 6	1,747.9 7	2,021.6 7	2,249.6 9	2,267.5 1
Net Surplus / Deficit	35.68	(151.12)	(2.82)	6.38	83.89	4.93	(41.70)	(70.30)	(290.85)	(497.26)	(491.31)

CHAPTER - 10

IMPLEMENTATION PLAN

10.1 INTRODUCTION:

This chapter provides a strategic framework to ensure that the Remodeling of storm water drain project proposed for Bangalore city is managed in a reliable, affordable, sustainable and environmentally friendly manner, and which is most essential for success of any project.

But from the existing management practices followed by the stakeholders and also with the prevailing site conditions, it appears that, along with the resources required to achieve the recommended targets, strategies and actions, they also needs to adopt best storm drain management practices, improvised construction and construction supervision techniques, strengthened organizational setup, major legislative changes, coordination with other stakeholders, public awareness campaigns including their participation to minimize the adverse implications on storm drain functionality and storm drain management practice in the city.

In order to achieve the overall objectives of the project, it is very much essential to have a proper implementation programme that could ensure better control over the project cost and resources mobilized etc. BMP also proposes to have a separate project implementation unit within BMP (other than members from stake holders dept.), headed by a senior officer from the Engineering wing, Revenue wing, consortia of Technical consultants, Financial advisors, Project management consultants, co ordination committee members (other stake holders dept. members), PRO's & NGO's.

10.2 STAGES OF THE PROJECT:

The proposed project is take up in two stages and it is proposed that Stage – I activities will be carried out by external Technical Consultants and Stage – II activities shall be monitored by the design consultants and the same will be over seen by BMP.

Stage – I PREPARATION OF DETAILED PROJECT REPORT:

- **Phase 1:** Technical, Economical and Environmental Feasibility Study of the Project of Remodeling of the Storm Water Drain System.
- Phase 2: Detailed engineering design, preparation of tender documents, cost estimates for the remodeling work, Preparation of Bid document and assist BMP to entrust the work to experienced, competent and successful agency.

A brief scope of assignment to be rendered by the Technical Consultants is given below:

- Detailed topographical and geo-technical survey
- Assessment of quantity of runoff
- Adequacy analysis of existing drains
- Hydraulic and structural designs and drawings
- Cost estimation and Bill of Quantities
- Technical specifications.
- Bid Documents
- Slicing and Packaging (Phasing for Implementation)
- Assistance in Inviting and evaluating Bids
- Project management and Quality assurance

The outline methodology Phase – I & Phase- II works & activity bar chart for Stage – I works is enclosed in this chapter as Fig. 10.1, Fig. 10.2 & Fig. 10.3.

Stage – II PROJECT IMPLEMENTATION:

The works envisaged in the project are grouped into 16 packages and each package costing around Rs. 20 Crores.

The details of the works identified are narrated in detail in the previous chapters and the summary of the same is indicated packages are as mentioned in the Table 10.1. and the same is depicted in Figure no. 10.4.

	Drain Len	igth, (Km.)	Total No. of	
Name of the Valley	Primary	Secondary	Culverts/Bridges Considered for Remodelling	Tender Package No.
Koramangala Valley				
Koramangala Main Valley	12.000	17.710	12	K1VD – I, K1VD- II & K1VD- IV
Tavarekere Valley	7.650	18.825	9	K2VD - III
Challaghatta Valley				
Challaghatta Main Valley	12.000	13.400	14	C1VD - II & C1VD- III
Ulsoor Valley	4.150	4.170	9	C2VD - I
Hebbal Valley				
Hebbal Main Valley	4.425	4.800	5	H1VD- I
Hebbal Main Valley - I	9.000	10.695	6	H2VD- II
Hebbal Minor Valley - I	7.375	9.330	16	H3VD- III
Hebbal Minor Valley - II	5.000	0.950	1	H4VD- IV
Vrishabhavathi Valley				
Vrishabhavathi Main Valley	14.000	30.945	18	V1VD - I & V1VD- II
Kethmaranahalli & Arkavathi Valley	13.300	14.675	15	V2VD - III & V2VD- IV
Kathriguppe Valley	4.850	11.400	6	V3VD- V

Detailed Project Report



Figure 10.4 Packages Details

The site activities envisaged in all the 16 packages are classified into five categories viz'

Rehabilitation works to existing system:

- I. Reconstruction of collapsed wall
- II. Restoration of broken wall
- III. Cavity filling, restoration of eroded stones, providing pointing to the existing drain walls etc.

Carrying capacity improvement works:

- I. Widening of Drains
- II. Desilting and drain deepening
- III. Drain bed protection

Remodeling of existing inadequate vent way/Structurally unstable - bridges/culverts.

Removal of obstacles – pipe lines, manholes, cables etc.

Training & Community awareness campaigns.

The works proposed for remodeling of storm drains shall be taken up in a phased manner simultaneously in all the packages. Since, some of the critical issues like coordination from other agencies in several instances, community participation, acquisition of land from government & public, shifting of major utilities, traffic diversion at several places etc., are envisaged in all the packages.

After having several discussion with senior officials of BMP and other stake holders and beneficiaries of the project. Work programme with a broader contest has been formulated keeping in view the availability of the resources, minimum distraction to the adjoining properties, to cause less inconvenience to the public, considering the environmental aspects etc., also for smooth and successful implementation of the project, which is as narrated below,

Brief Work Programme for Remodeling of Storm Water Drains in Bangalore City:

- All the works considered under remodeling project shall start simultaneously from down stream end of respective packages.
- Vegetation growth noticed inside the drain at various locations shall be removed in all the packages.
- Shifting of service lines which are noticed all along the entire length of the drain at various locations, shall be taken up simultaneously in coordination with various agencies in all the packages.
- Stoppage of sewage and other undesirable liquid wastes entry into storm drains which are noticed over the entire length shall be taken up simultaneously in all the packages.
- Desilting of drains, removal of debris/solid wastes etc., which are noticed over the entire length of storm drain, shall be taken up simultaneously in all the packages.
- Widening of storm drains at the critical reaches, which are identified at various locations under the project, shall be taken up simultaneously in all the packages.
- Culvert/bridges considered for remodeling under the project, at various locations shall be taken up simultaneously in all the packages.
- Construction of new drains considered for minimizing the flooding problems in low lying areas which are spread over at various locations shall be taken up simultaneously in all the packages.
- Reaches of existing drain walls proposed for reconstruction/restoration under the project at various locations in the entire length of drain, shall be taken up simultaneously in all the packages.
- Providing rehabilitation works to existing drain walls and other structures considered under the project at various locations, shall be taken up simultaneously in all the packages.
- Construction of new drain wall / stone revetment in the reaches identified at various locations under the project shall be taken up simultaneously in all the packages.
- Providing pointing and skin reinforcement to the entire length of existing SSM storm drain walls shall be taken up simultaneously in all the packages.

- Construction of water recharging structures and development of land along side of the drain shall be taken up simultaneously in all the packages.
- Providing bed protection to the entire length of storm drains shall be taken up simultaneously in all the packages.
- Restoration of roads, cross drains and other infrastructure facilities, after completion of the works at various locations, shall be taken up simultaneously in all the packages.
- Providing improvements works at along side of the storm drains, shall be taken up simultaneously in all the packages.
- Periodic maintenance of storm drainage system shall be taken up for the entire length of the drains in all the packages.

10.3 IMPLEMENTATION PROGRAMME:

It is estimated that the work envisaged under remodeling of storm water drain project would involve period of 24 months from bidding with first six months dedicated to tender process and award of contract, which will be done as per KTTP act and 18 months for the execution of civil works.

It is proposed that BMP, the nodal agency will set up a separate implementation unit whose responsibilities would include ensuring the deployment of adequate staff, usage of quality materials, construction practices of acceptable standards and quality of works carried out, monitoring and reporting the project progress to the project monitoring agencies.

Tender specifications and construction practices are reflected in the bid document issued by BMP for its works related to construction of system components. The contractor would also adhere to the environmental regulations in practices and keep the citizens informed of the scheduled of the project underway in a periodic manner.

Detailed item wise implementation schedule for the execution of the project is enclosed in this report.